|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import VersatileDiffusionTextToImagePipeline |
|
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class VersatileDiffusionTextToImagePipelineFastTests(unittest.TestCase): |
|
pass |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class VersatileDiffusionTextToImagePipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_remove_unused_weights_save_load(self): |
|
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion") |
|
|
|
pipe.remove_unused_weights() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger " |
|
generator = torch.manual_seed(0) |
|
image = pipe( |
|
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" |
|
).images |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
pipe.save_pretrained(tmpdirname) |
|
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained(tmpdirname) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = generator.manual_seed(0) |
|
new_image = pipe( |
|
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy" |
|
).images |
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" |
|
|
|
def test_inference_text2img(self): |
|
pipe = VersatileDiffusionTextToImagePipeline.from_pretrained( |
|
"shi-labs/versatile-diffusion", torch_dtype=torch.float16 |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A painting of a squirrel eating a burger " |
|
generator = torch.manual_seed(0) |
|
image = pipe( |
|
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy" |
|
).images |
|
|
|
image_slice = image[0, 253:256, 253:256, -1] |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|