# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, StableDiffusionPix2PixZeroPipeline, UNet2DConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, load_pt, require_torch_gpu, skip_mps from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() @skip_mps class StableDiffusionPix2PixZeroPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): pipeline_class = StableDiffusionPix2PixZeroPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"image"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def setUpClass(cls): cls.source_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/src_emb_0.pt" ) cls.target_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/tgt_emb_0.pt" ) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DDIMScheduler() inverse_scheduler = DDIMInverseScheduler() torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "inverse_scheduler": inverse_scheduler, "caption_generator": None, "caption_processor": None, } return components def get_dummy_inputs(self, device, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "cross_attention_guidance_amount": 0.15, "source_embeds": self.source_embeds, "target_embeds": self.target_embeds, "output_type": "numpy", } return inputs def get_dummy_inversion_inputs(self, device, seed=0): dummy_image = floats_tensor((2, 3, 32, 32), rng=random.Random(seed)).to(torch_device) dummy_image = dummy_image / 2 + 0.5 generator = torch.manual_seed(seed) inputs = { "prompt": [ "A painting of a squirrel eating a burger", "A painting of a burger eating a squirrel", ], "image": dummy_image.cpu(), "num_inference_steps": 2, "guidance_scale": 6.0, "generator": generator, "output_type": "numpy", } return inputs def get_dummy_inversion_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"): inputs = self.get_dummy_inversion_inputs(device, seed) if input_image_type == "pt": image = inputs["image"] elif input_image_type == "np": image = VaeImageProcessor.pt_to_numpy(inputs["image"]) elif input_image_type == "pil": image = VaeImageProcessor.pt_to_numpy(inputs["image"]) image = VaeImageProcessor.numpy_to_pil(image) else: raise ValueError(f"unsupported input_image_type {input_image_type}") inputs["image"] = image inputs["output_type"] = output_type return inputs def test_save_load_optional_components(self): if not hasattr(self.pipeline_class, "_optional_components"): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) def test_stable_diffusion_pix2pix_zero_inversion(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) inputs["image"] = inputs["image"][:1] inputs["prompt"] = inputs["prompt"][:1] image = sd_pipe.invert(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4823, 0.4783, 0.5638, 0.5201, 0.5247, 0.5644, 0.5029, 0.5404, 0.5062]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_inversion_batch(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) image = sd_pipe.invert(**inputs).images image_slice = image[1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) expected_slice = np.array([0.6446, 0.5232, 0.4914, 0.4441, 0.4654, 0.5546, 0.4650, 0.4938, 0.5044]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4863, 0.5053, 0.5033, 0.4007, 0.3571, 0.4768, 0.5176, 0.5277, 0.4940]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "french fries" output = sd_pipe(**inputs, negative_prompt=negative_prompt) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5177, 0.5097, 0.5047, 0.4076, 0.3667, 0.4767, 0.5238, 0.5307, 0.4958]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" ) sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5421, 0.5525, 0.6085, 0.5279, 0.4658, 0.5317, 0.4418, 0.4815, 0.5132]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_ddpm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() components["scheduler"] = DDPMScheduler() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.4861, 0.5053, 0.5038, 0.3994, 0.3562, 0.4768, 0.5172, 0.5280, 0.4938]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_outputs_equivalent(self): device = torch_device components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) output_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pt")).images output_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="np")).images output_pil = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pil")).images max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() self.assertLess(max_diff, 1e-4, "`output_type=='pt'` generate different results from `output_type=='np'`") max_diff = np.abs(np.array(output_pil[0]) - (output_np[0] * 255).round()).max() self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`") def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_inputs_equivalent(self): device = torch_device components = self.get_dummy_components() sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) out_input_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="pt")).images out_input_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="np")).images out_input_pil = sd_pipe.invert( **self.get_dummy_inversion_inputs_by_type(device, input_image_type="pil") ).images max_diff = np.abs(out_input_pt - out_input_np).max() self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`") assert_mean_pixel_difference(out_input_pil, out_input_np, expected_max_diff=1) # Non-determinism caused by the scheduler optimizing the latent inputs during inference @unittest.skip("non-deterministic pipeline") def test_inference_batch_single_identical(self): return super().test_inference_batch_single_identical() @slow @require_torch_gpu class StableDiffusionPix2PixZeroPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): cls.source_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat.pt" ) cls.target_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.pt" ) def get_inputs(self, seed=0): generator = torch.manual_seed(seed) inputs = { "prompt": "turn him into a cyborg", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "cross_attention_guidance_amount": 0.15, "source_embeds": self.source_embeds, "target_embeds": self.target_embeds, "output_type": "numpy", } return inputs def test_stable_diffusion_pix2pix_zero_default(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.5742, 0.5757, 0.5747, 0.5781, 0.5688, 0.5713, 0.5742, 0.5664, 0.5747]) assert np.abs(expected_slice - image_slice).max() < 5e-2 def test_stable_diffusion_pix2pix_zero_k_lms(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.6367, 0.5459, 0.5146, 0.5479, 0.4905, 0.4753, 0.4961, 0.4629, 0.4624]) assert np.abs(expected_slice - image_slice).max() < 5e-2 def test_stable_diffusion_pix2pix_zero_intermediate_state(self): number_of_steps = 0 def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 1: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.1345, 0.268, 0.1539, 0.0726, 0.0959, 0.2261, -0.2673, 0.0277, -0.2062]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: latents = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array([0.1393, 0.2637, 0.1617, 0.0724, 0.0987, 0.2271, -0.2666, 0.0299, -0.2104]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 callback_fn.has_been_called = False pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() inputs = self.get_inputs() pipe(**inputs, callback=callback_fn, callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() inputs = self.get_inputs() _ = pipe(**inputs) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 8.2 GB is allocated assert mem_bytes < 8.2 * 10**9 @slow @require_torch_gpu class InversionPipelineSlowTests(unittest.TestCase): def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): raw_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png" ) raw_image = raw_image.convert("RGB").resize((512, 512)) cls.raw_image = raw_image def test_stable_diffusion_pix2pix_inversion(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10) inv_latents = output[0] image_slice = inv_latents[0, -3:, -3:, -1].flatten() assert inv_latents.shape == (1, 4, 64, 64) expected_slice = np.array([0.8447, -0.0730, 0.7588, -1.2070, -0.4678, 0.1511, -0.8555, 1.1816, -0.7666]) assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2 def test_stable_diffusion_2_pix2pix_inversion(self): pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10) inv_latents = output[0] image_slice = inv_latents[0, -3:, -3:, -1].flatten() assert inv_latents.shape == (1, 4, 64, 64) expected_slice = np.array([0.8970, -0.1611, 0.4766, -1.1162, -0.5923, 0.1050, -0.9678, 1.0537, -0.6050]) assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2 def test_stable_diffusion_pix2pix_full(self): # numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog.png expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.npy" ) pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator) inv_latents = output[0] source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] source_embeds = pipe.get_embeds(source_prompts) target_embeds = pipe.get_embeds(target_prompts) image = pipe( caption, source_embeds=source_embeds, target_embeds=target_embeds, num_inference_steps=50, cross_attention_guidance_amount=0.15, generator=generator, latents=inv_latents, negative_prompt=caption, output_type="np", ).images max_diff = np.abs(expected_image - image).mean() assert max_diff < 0.05 def test_stable_diffusion_2_pix2pix_full(self): # numpy array of https://huggingface.co/datasets/hf-internal-testing/diffusers-images/blob/main/pix2pix/dog_2.png expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog_2.npy" ) pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) caption = "a photography of a cat with flowers" pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) output = pipe.invert(caption, image=self.raw_image, generator=generator) inv_latents = output[0] source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] source_embeds = pipe.get_embeds(source_prompts) target_embeds = pipe.get_embeds(target_prompts) image = pipe( caption, source_embeds=source_embeds, target_embeds=target_embeds, num_inference_steps=125, cross_attention_guidance_amount=0.015, generator=generator, latents=inv_latents, negative_prompt=caption, output_type="np", ).images mean_diff = np.abs(expected_image - image).mean() assert mean_diff < 0.25