update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: bert-base-parsbert-uncased-ontonotesv5
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# bert-base-parsbert-uncased-ontonotesv5
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2169
|
22 |
+
- Precision: 0.8145
|
23 |
+
- Recall: 0.8287
|
24 |
+
- F1: 0.8215
|
25 |
+
- Accuracy: 0.9741
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 32
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 15
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.1029 | 1.0 | 2310 | 0.1151 | 0.8080 | 0.7559 | 0.7811 | 0.9691 |
|
57 |
+
| 0.059 | 2.0 | 4620 | 0.1098 | 0.7909 | 0.8068 | 0.7988 | 0.9719 |
|
58 |
+
| 0.0363 | 3.0 | 6930 | 0.1205 | 0.7981 | 0.8168 | 0.8074 | 0.9728 |
|
59 |
+
| 0.0202 | 4.0 | 9240 | 0.1406 | 0.8115 | 0.8046 | 0.8080 | 0.9726 |
|
60 |
+
| 0.0122 | 5.0 | 11550 | 0.1496 | 0.7847 | 0.8225 | 0.8031 | 0.9721 |
|
61 |
+
| 0.0105 | 6.0 | 13860 | 0.1633 | 0.7962 | 0.8188 | 0.8073 | 0.9724 |
|
62 |
+
| 0.0057 | 7.0 | 16170 | 0.1842 | 0.8071 | 0.8133 | 0.8102 | 0.9729 |
|
63 |
+
| 0.0041 | 8.0 | 18480 | 0.1913 | 0.8081 | 0.8093 | 0.8087 | 0.9727 |
|
64 |
+
| 0.003 | 9.0 | 20790 | 0.1935 | 0.8121 | 0.8130 | 0.8126 | 0.9732 |
|
65 |
+
| 0.002 | 10.0 | 23100 | 0.1992 | 0.8136 | 0.8214 | 0.8175 | 0.9734 |
|
66 |
+
| 0.002 | 11.0 | 25410 | 0.2037 | 0.8014 | 0.8280 | 0.8145 | 0.9735 |
|
67 |
+
| 0.0012 | 12.0 | 27720 | 0.2092 | 0.8133 | 0.8204 | 0.8168 | 0.9737 |
|
68 |
+
| 0.001 | 13.0 | 30030 | 0.2095 | 0.8125 | 0.8253 | 0.8188 | 0.9739 |
|
69 |
+
| 0.0006 | 14.0 | 32340 | 0.2143 | 0.8129 | 0.8272 | 0.8200 | 0.9740 |
|
70 |
+
| 0.0005 | 15.0 | 34650 | 0.2169 | 0.8145 | 0.8287 | 0.8215 | 0.9741 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.27.0.dev0
|
76 |
+
- Pytorch 1.13.1+cu116
|
77 |
+
- Datasets 2.8.0
|
78 |
+
- Tokenizers 0.13.2
|