Amir13 commited on
Commit
cf40f1d
·
1 Parent(s): 48bbd59

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: xlm-roberta-base-conll2003-en
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ config: conll2003
22
+ split: validation
23
+ args: conll2003
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9478680879413725
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9588879528222409
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9533461763966831
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9917972098823162
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # xlm-roberta-base-conll2003-en
43
+
44
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the conll2003 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0534
47
+ - Precision: 0.9479
48
+ - Recall: 0.9589
49
+ - F1: 0.9533
50
+ - Accuracy: 0.9918
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 32
71
+ - eval_batch_size: 32
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 15
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 439 | 0.0535 | 0.9131 | 0.9238 | 0.9184 | 0.9865 |
82
+ | 0.1663 | 2.0 | 878 | 0.0461 | 0.9305 | 0.9390 | 0.9348 | 0.9887 |
83
+ | 0.0404 | 3.0 | 1317 | 0.0366 | 0.9431 | 0.9501 | 0.9466 | 0.9910 |
84
+ | 0.0252 | 4.0 | 1756 | 0.0381 | 0.9395 | 0.9516 | 0.9455 | 0.9908 |
85
+ | 0.0172 | 5.0 | 2195 | 0.0398 | 0.9409 | 0.9523 | 0.9466 | 0.9911 |
86
+ | 0.0119 | 6.0 | 2634 | 0.0429 | 0.9389 | 0.9560 | 0.9474 | 0.9910 |
87
+ | 0.0091 | 7.0 | 3073 | 0.0463 | 0.9451 | 0.9548 | 0.9500 | 0.9913 |
88
+ | 0.0063 | 8.0 | 3512 | 0.0446 | 0.9478 | 0.9575 | 0.9526 | 0.9919 |
89
+ | 0.0063 | 9.0 | 3951 | 0.0513 | 0.9424 | 0.9569 | 0.9496 | 0.9911 |
90
+ | 0.0049 | 10.0 | 4390 | 0.0494 | 0.9470 | 0.9545 | 0.9507 | 0.9915 |
91
+ | 0.0036 | 11.0 | 4829 | 0.0506 | 0.9477 | 0.9553 | 0.9515 | 0.9917 |
92
+ | 0.0029 | 12.0 | 5268 | 0.0518 | 0.9472 | 0.9586 | 0.9529 | 0.9919 |
93
+ | 0.0026 | 13.0 | 5707 | 0.0530 | 0.9451 | 0.9567 | 0.9508 | 0.9916 |
94
+ | 0.0021 | 14.0 | 6146 | 0.0526 | 0.9468 | 0.9567 | 0.9517 | 0.9917 |
95
+ | 0.0016 | 15.0 | 6585 | 0.0534 | 0.9479 | 0.9589 | 0.9533 | 0.9918 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.26.1
101
+ - Pytorch 1.13.1+cu116
102
+ - Datasets 2.9.0
103
+ - Tokenizers 0.13.2