update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlm-roberta-base-ontonotesv5-en
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-roberta-base-ontonotesv5-en
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1381
|
23 |
+
- Precision: 0.8637
|
24 |
+
- Recall: 0.8785
|
25 |
+
- F1: 0.8710
|
26 |
+
- Accuracy: 0.9804
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0787 | 1.0 | 2350 | 0.0831 | 0.8119 | 0.8611 | 0.8358 | 0.9765 |
|
58 |
+
| 0.0565 | 2.0 | 4700 | 0.0756 | 0.8513 | 0.8708 | 0.8609 | 0.9794 |
|
59 |
+
| 0.0415 | 3.0 | 7050 | 0.0763 | 0.8530 | 0.8739 | 0.8633 | 0.9801 |
|
60 |
+
| 0.0347 | 4.0 | 9400 | 0.0820 | 0.8558 | 0.8810 | 0.8682 | 0.9804 |
|
61 |
+
| 0.0252 | 5.0 | 11750 | 0.0913 | 0.8683 | 0.8607 | 0.8645 | 0.9791 |
|
62 |
+
| 0.0201 | 6.0 | 14100 | 0.0923 | 0.86 | 0.8763 | 0.8681 | 0.9804 |
|
63 |
+
| 0.0172 | 7.0 | 16450 | 0.1023 | 0.8617 | 0.8788 | 0.8702 | 0.9800 |
|
64 |
+
| 0.0118 | 8.0 | 18800 | 0.1083 | 0.8579 | 0.8756 | 0.8667 | 0.9799 |
|
65 |
+
| 0.0101 | 9.0 | 21150 | 0.1162 | 0.8583 | 0.8766 | 0.8674 | 0.9803 |
|
66 |
+
| 0.009 | 10.0 | 23500 | 0.1189 | 0.8623 | 0.8772 | 0.8697 | 0.9804 |
|
67 |
+
| 0.0074 | 11.0 | 25850 | 0.1259 | 0.8642 | 0.8757 | 0.8699 | 0.9804 |
|
68 |
+
| 0.0053 | 12.0 | 28200 | 0.1303 | 0.8601 | 0.8765 | 0.8682 | 0.9800 |
|
69 |
+
| 0.0046 | 13.0 | 30550 | 0.1345 | 0.8619 | 0.8755 | 0.8686 | 0.9799 |
|
70 |
+
| 0.004 | 14.0 | 32900 | 0.1381 | 0.8637 | 0.8785 | 0.8710 | 0.9804 |
|
71 |
+
| 0.0029 | 15.0 | 35250 | 0.1405 | 0.8616 | 0.8788 | 0.8701 | 0.9803 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.27.0.dev0
|
77 |
+
- Pytorch 1.13.1+cu116
|
78 |
+
- Datasets 2.8.0
|
79 |
+
- Tokenizers 0.13.2
|