Amir13 commited on
Commit
436e51e
·
1 Parent(s): 85f5c84

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-base-ontonotesv5-en
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base-ontonotesv5-en
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1381
23
+ - Precision: 0.8637
24
+ - Recall: 0.8785
25
+ - F1: 0.8710
26
+ - Accuracy: 0.9804
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0787 | 1.0 | 2350 | 0.0831 | 0.8119 | 0.8611 | 0.8358 | 0.9765 |
58
+ | 0.0565 | 2.0 | 4700 | 0.0756 | 0.8513 | 0.8708 | 0.8609 | 0.9794 |
59
+ | 0.0415 | 3.0 | 7050 | 0.0763 | 0.8530 | 0.8739 | 0.8633 | 0.9801 |
60
+ | 0.0347 | 4.0 | 9400 | 0.0820 | 0.8558 | 0.8810 | 0.8682 | 0.9804 |
61
+ | 0.0252 | 5.0 | 11750 | 0.0913 | 0.8683 | 0.8607 | 0.8645 | 0.9791 |
62
+ | 0.0201 | 6.0 | 14100 | 0.0923 | 0.86 | 0.8763 | 0.8681 | 0.9804 |
63
+ | 0.0172 | 7.0 | 16450 | 0.1023 | 0.8617 | 0.8788 | 0.8702 | 0.9800 |
64
+ | 0.0118 | 8.0 | 18800 | 0.1083 | 0.8579 | 0.8756 | 0.8667 | 0.9799 |
65
+ | 0.0101 | 9.0 | 21150 | 0.1162 | 0.8583 | 0.8766 | 0.8674 | 0.9803 |
66
+ | 0.009 | 10.0 | 23500 | 0.1189 | 0.8623 | 0.8772 | 0.8697 | 0.9804 |
67
+ | 0.0074 | 11.0 | 25850 | 0.1259 | 0.8642 | 0.8757 | 0.8699 | 0.9804 |
68
+ | 0.0053 | 12.0 | 28200 | 0.1303 | 0.8601 | 0.8765 | 0.8682 | 0.9800 |
69
+ | 0.0046 | 13.0 | 30550 | 0.1345 | 0.8619 | 0.8755 | 0.8686 | 0.9799 |
70
+ | 0.004 | 14.0 | 32900 | 0.1381 | 0.8637 | 0.8785 | 0.8710 | 0.9804 |
71
+ | 0.0029 | 15.0 | 35250 | 0.1405 | 0.8616 | 0.8788 | 0.8701 | 0.9803 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.27.0.dev0
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.8.0
79
+ - Tokenizers 0.13.2