--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-sidewalk-oct-22 results: [] --- # segformer-b0-finetuned-segments-sidewalk-oct-22 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the face-wrinkles dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0004 - eval_mean_iou: 0.0 - eval_mean_accuracy: nan - eval_overall_accuracy: nan - eval_accuracy_background: nan - eval_iou_background: 0.0 - eval_runtime: 7.7125 - eval_samples_per_second: 6.613 - eval_steps_per_second: 3.371 - epoch: 6.1035 - step: 2240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3