File size: 3,958 Bytes
10ab3b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: final_V2-bert-after-adding-new-words-text-classification-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# final_V2-bert-after-adding-new-words-text-classification-model

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1494
- Accuracy: 0.9716
- F1: 0.8348
- Precision: 0.8317
- Recall: 0.8385

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.8136        | 0.11  | 50   | 1.7501          | 0.3470   | 0.1733 | 0.3034    | 0.1944 |
| 0.9023        | 0.22  | 100  | 1.2121          | 0.5723   | 0.3083 | 0.3496    | 0.3189 |
| 0.5924        | 0.33  | 150  | 0.9662          | 0.6667   | 0.3919 | 0.4265    | 0.4037 |
| 0.4218        | 0.44  | 200  | 0.4848          | 0.8813   | 0.6427 | 0.6492    | 0.6413 |
| 0.2025        | 0.55  | 250  | 0.3807          | 0.9021   | 0.6677 | 0.6538    | 0.6829 |
| 0.1609        | 0.66  | 300  | 0.3360          | 0.9147   | 0.6763 | 0.6727    | 0.6822 |
| 0.2035        | 0.76  | 350  | 0.3705          | 0.8991   | 0.6711 | 0.6589    | 0.6838 |
| 0.1208        | 0.87  | 400  | 0.2140          | 0.9565   | 0.8218 | 0.8137    | 0.8323 |
| 0.1313        | 0.98  | 450  | 0.6818          | 0.8704   | 0.6779 | 0.7179    | 0.6859 |
| 0.1576        | 1.09  | 500  | 0.2508          | 0.9212   | 0.7443 | 0.7888    | 0.7311 |
| 0.0593        | 1.2   | 550  | 0.2091          | 0.9552   | 0.8193 | 0.8179    | 0.8227 |
| 0.0705        | 1.31  | 600  | 0.2010          | 0.9552   | 0.8154 | 0.8091    | 0.8225 |
| 0.0637        | 1.42  | 650  | 0.1985          | 0.9573   | 0.8187 | 0.8115    | 0.8275 |
| 0.0619        | 1.53  | 700  | 0.2306          | 0.9541   | 0.8241 | 0.8194    | 0.8301 |
| 0.0582        | 1.64  | 750  | 0.2001          | 0.9609   | 0.8280 | 0.8250    | 0.8320 |
| 0.1132        | 1.75  | 800  | 0.1439          | 0.9680   | 0.8324 | 0.8284    | 0.8367 |
| 0.0416        | 1.86  | 850  | 0.1558          | 0.9680   | 0.8333 | 0.8301    | 0.8369 |
| 0.0371        | 1.97  | 900  | 0.2242          | 0.9595   | 0.8280 | 0.8235    | 0.8345 |
| 0.0428        | 2.07  | 950  | 0.1907          | 0.9617   | 0.8303 | 0.8262    | 0.8356 |
| 0.0388        | 2.18  | 1000 | 0.1784          | 0.9658   | 0.8319 | 0.8266    | 0.8383 |
| 0.0335        | 2.29  | 1050 | 0.1735          | 0.9675   | 0.8323 | 0.8266    | 0.8390 |
| 0.0361        | 2.4   | 1100 | 0.1921          | 0.9636   | 0.8283 | 0.8219    | 0.8360 |
| 0.0126        | 2.51  | 1150 | 0.2200          | 0.9614   | 0.8294 | 0.8274    | 0.8327 |
| 0.003         | 2.62  | 1200 | 0.2251          | 0.9614   | 0.8296 | 0.8262    | 0.8346 |
| 0.0029        | 2.73  | 1250 | 0.1750          | 0.9694   | 0.8348 | 0.8314    | 0.8388 |
| 0.0137        | 2.84  | 1300 | 0.1775          | 0.9686   | 0.8345 | 0.8300    | 0.8397 |
| 0.0184        | 2.95  | 1350 | 0.1860          | 0.9675   | 0.8337 | 0.8293    | 0.8391 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2