Update README.md
Browse files
README.md
CHANGED
@@ -5,9 +5,35 @@ This model is further pre-trained on the Mathematics StackExchange questions and
|
|
5 |
## Usage
|
6 |
```
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
8 |
|
9 |
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
|
10 |
model = AutoModelForSequenceClassification.from_pretrained("AnReu/albert-for-math-ar-base-ft")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
```
|
12 |
|
13 |
## Reference
|
|
|
5 |
## Usage
|
6 |
```
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
import torch
|
9 |
|
10 |
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
|
11 |
model = AutoModelForSequenceClassification.from_pretrained("AnReu/albert-for-math-ar-base-ft")
|
12 |
+
|
13 |
+
classes = ["non relevant", "relevant"]
|
14 |
+
|
15 |
+
sequence_0 = "How can I calculate x in $3x = 5$"
|
16 |
+
sequence_1 = "Just divide by 3: $x = \\frac{5}{3}$"
|
17 |
+
sequence_2 = "The general rule for squaring a sum is $(a+b)^2=a^2+2ab+b^2$"
|
18 |
+
|
19 |
+
# The tokenizer will automatically add any model specific separators (i.e. <CLS> and <SEP>) and tokens to
|
20 |
+
# the sequence, as well as compute the attention masks.
|
21 |
+
irrelevant = tokenizer(sequence_0, sequence_2, return_tensors="pt")
|
22 |
+
relevant = tokenizer(sequence_0, sequence_1, return_tensors="pt")
|
23 |
+
|
24 |
+
irrelevant_classification_logits = model(**irrelevant).logits
|
25 |
+
relevant_classification_logits = model(**relevant).logits
|
26 |
+
|
27 |
+
irrelevant_results = torch.softmax(irrelevant_classification_logits, dim=1).tolist()[0]
|
28 |
+
relevant_results = torch.softmax(relevant_classification_logits, dim=1).tolist()[0]
|
29 |
+
|
30 |
+
# Should be irrelevant
|
31 |
+
for i in range(len(classes)):
|
32 |
+
print(f"{classes[i]}: {int(round(irrelevant_results[i] * 100))}%")
|
33 |
+
|
34 |
+
# Should be relevant
|
35 |
+
for i in range(len(classes)):
|
36 |
+
print(f"{classes[i]}: {int(round(relevant_results[i] * 100))}%")
|
37 |
```
|
38 |
|
39 |
## Reference
|