Anany commited on
Commit
65f8148
Β·
verified Β·
1 Parent(s): 1853ff6

Bird-Drone Classifier
The Bird-Drone Classifier is a machine learning model built using the Hugging Face ecosystem to accurately distinguish between birds and drones in images. It is optimized for airspace monitoring, security systems, and wildlife observation applications.

Table of Contents
Overview
Features
Hugging Face Model
Installation
Usage
Dataset
Training and Fine-tuning
Technologies
Future Work
Contributing
License
Overview
The Bird-Drone Classifier uses advanced machine learning algorithms to classify objects in images as either birds or drones. The model is hosted on the Hugging Face Model Hub for easy access and deployment.

Use Cases
Prevent unauthorized drone activity in restricted airspaces.
Enhance wildlife monitoring systems.
Reduce false positives in drone detection systems.
Features
Pre-trained Model: Available on the Hugging Face Model Hub for immediate use.
Custom Fine-tuning: Supports dataset customization for specific use cases.
Real-time Integration: Can be used with live video feeds or batch image processing.
Hugging Face Model
The pre-trained model is available on the Hugging Face Model Hub:
πŸ‘‰ Bird-Drone Classifier on Hugging Face

Quick Start
python
Copy code
from transformers import AutoModelForImageClassification, AutoProcessor
from PIL import Image

# Load the model and processor
model = AutoModelForImageClassification.from_pretrained("your-username/bird-drone-classifier")
processor = AutoProcessor.from_pretrained("your-username/bird-drone-classifier")

# Load and process the image
image = Image.open("input_image.jpg")
inputs = processor(images=image, return_tensors="pt")

# Predict
outputs = model(**inputs)
predicted_class = outputs.logits.argmax(-1).item()

classes = ["Bird", "Drone"]
print(f"Predicted Class: {classes[predicted_class]}")
Installation
Clone the repository:

bash
Copy code
git clone https://github.com/yourusername/bird-drone-classifier.git
cd bird-drone-classifier
Install dependencies:

bash
Copy code
pip install -r requirements.txt
Install Hugging Face libraries:

bash
Copy code
pip install transformers datasets evaluate huggingface_hub
Usage
Image Classification
Run the classification script:

bash
Copy code
python classify.py --image_path ./input_image.jpg
Real-Time Classification
To process a video feed:

bash
Copy code
python real_time_detect.py --video_path ./sample_video.mp4
Dataset
The dataset includes:

Bird Images: Sourced from wildlife image datasets like iNaturalist.
Drone Images: Collected from publicly available datasets.
Dataset Structure
bash
Copy code
dataset/
β”œβ”€β”€ train/
β”‚ β”œβ”€β”€ birds/
β”‚ β”œβ”€β”€ drones/
β”œβ”€β”€ test/
β”‚ β”œβ”€β”€ birds/
β”‚ β”œβ”€β”€ drones/
Loading Dataset with Hugging Face Datasets
python
Copy code
from datasets import load_dataset

dataset = load_dataset("your-dataset-name/bird-drone-dataset")
Training and Fine-tuning
Train or fine-tune the model using the Hugging Face Trainer API:

bash
Copy code
python train.py --dataset_path ./dataset --epochs 10 --output_dir ./model_output
You can also push your fine-tuned model to the Hugging Face Model Hub:

python
Copy code
from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
output_dir="your-hub-repo-name",
evaluation_strategy="steps",
save_steps=500,
push_to_hub=True
)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"]
)

trainer.train()
trainer.push_to_hub()
Technologies
Hugging Face Transformers: Model and training tools.
Hugging Face Datasets: Dataset management.
Python: Core programming language.
PyTorch: Model backbone.
Future Work
Add support for more diverse datasets.
Deploy the model as a Hugging Face Space for web-based interaction.
Improve detection accuracy with additional sensor data (e.g., audio, thermal).
Contributing
We welcome contributions! Please follow these steps:

Fork the repository.
Create a new branch (git checkout -b feature-name).
Commit your changes (git commit -m "Add new feature").
Push to the branch (git push origin feature-name).
Open a pull request.
License
This project is licensed under the MIT License. See the LICENSE file for details.

Files changed (1) hide show
  1. README.md +200 -0
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
+
13
+ ## Model Details
14
+
15
+ ### Model Description
16
+
17
+ <!-- Provide a longer summary of what this model is. -->
18
+
19
+
20
+
21
+ - **Developed by:** [More Information Needed]
22
+ - **Funded by [optional]:** [More Information Needed]
23
+ - **Shared by [optional]:** [More Information Needed]
24
+ - **Model type:** [More Information Needed]
25
+ - **Language(s) (NLP):** [More Information Needed]
26
+ - **License:** [More Information Needed]
27
+ - **Finetuned from model [optional]:** [More Information Needed]
28
+
29
+ ### Model Sources [optional]
30
+
31
+ <!-- Provide the basic links for the model. -->
32
+
33
+ - **Repository:** [More Information Needed]
34
+ - **Paper [optional]:** [More Information Needed]
35
+ - **Demo [optional]:** [More Information Needed]
36
+
37
+ ## Uses
38
+
39
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
+
41
+ ### Direct Use
42
+
43
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
+
45
+ [More Information Needed]
46
+
47
+ ### Downstream Use [optional]
48
+
49
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Out-of-Scope Use
54
+
55
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
+
57
+ [More Information Needed]
58
+
59
+ ## Bias, Risks, and Limitations
60
+
61
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ### Recommendations
66
+
67
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
+
69
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
+
71
+ ## How to Get Started with the Model
72
+
73
+ Use the code below to get started with the model.
74
+
75
+ [More Information Needed]
76
+
77
+ ## Training Details
78
+
79
+ ### Training Data
80
+
81
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
+
83
+ [More Information Needed]
84
+
85
+ ### Training Procedure
86
+
87
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
+
89
+ #### Preprocessing [optional]
90
+
91
+ [More Information Needed]
92
+
93
+
94
+ #### Training Hyperparameters
95
+
96
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
+
98
+ #### Speeds, Sizes, Times [optional]
99
+
100
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
+
102
+ [More Information Needed]
103
+
104
+ ## Evaluation
105
+
106
+ <!-- This section describes the evaluation protocols and provides the results. -->
107
+
108
+ ### Testing Data, Factors & Metrics
109
+
110
+ #### Testing Data
111
+
112
+ <!-- This should link to a Dataset Card if possible. -->
113
+
114
+ [More Information Needed]
115
+
116
+ #### Factors
117
+
118
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Metrics
123
+
124
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
+
126
+ [More Information Needed]
127
+
128
+ ### Results
129
+
130
+ [More Information Needed]
131
+
132
+ #### Summary
133
+
134
+
135
+
136
+ ## Model Examination [optional]
137
+
138
+ <!-- Relevant interpretability work for the model goes here -->
139
+
140
+ [More Information Needed]
141
+
142
+ ## Environmental Impact
143
+
144
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
+
146
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
+
148
+ - **Hardware Type:** [More Information Needed]
149
+ - **Hours used:** [More Information Needed]
150
+ - **Cloud Provider:** [More Information Needed]
151
+ - **Compute Region:** [More Information Needed]
152
+ - **Carbon Emitted:** [More Information Needed]
153
+
154
+ ## Technical Specifications [optional]
155
+
156
+ ### Model Architecture and Objective
157
+
158
+ [More Information Needed]
159
+
160
+ ### Compute Infrastructure
161
+
162
+ [More Information Needed]
163
+
164
+ #### Hardware
165
+
166
+ [More Information Needed]
167
+
168
+ #### Software
169
+
170
+ [More Information Needed]
171
+
172
+ ## Citation [optional]
173
+
174
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
+
176
+ **BibTeX:**
177
+
178
+ [More Information Needed]
179
+
180
+ **APA:**
181
+
182
+ [More Information Needed]
183
+
184
+ ## Glossary [optional]
185
+
186
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
+
188
+ [More Information Needed]
189
+
190
+ ## More Information [optional]
191
+
192
+ [More Information Needed]
193
+
194
+ ## Model Card Authors [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Contact
199
+
200
+ [More Information Needed]