ANDREEEWW commited on
Commit
63baa7e
·
verified ·
1 Parent(s): 86cd238

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 255.96 +/- 18.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7af74d397ac0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7af74d397b50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7af74d397be0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7af74d397c70>", "_build": "<function ActorCriticPolicy._build at 0x7af74d397d00>", "forward": "<function ActorCriticPolicy.forward at 0x7af74d397d90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7af74d397e20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7af74d397eb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7af74d397f40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7af74d39c040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7af74d39c0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7af74d39c160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af74d5426c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714136048898255612, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZASb5S85I/Z2oFvws3wr6mlXa+pD4qvgAAAAAAAAAAgApPPSnwLLoWgaE1WuxWMAoNpToLC7e0AACAPwAAgD8a1C+9pM+xPk9jpz1Lb0S+KUA9PV4/SL0AAAAAAAAAAGoynL72mTU/WNjaPVmSkL62mbi9Y2CCPAAAAAAAAAAAGr4ZPdRNjbza7sM7GgCgPFSj+D1mvX69AACAPwAAgD+ah+48xDmpPuZSZL6ew0++570HvY1eZzoAAAAAAAAAAPNxHT5Gm54/gv7cPqnPnr4jjDU+2KNcPQAAAAAAAAAAGl0dveEwirqY/OG6b9PztRo94LribQM6AACAPwAAgD8Auba8T+4HvO5cubuwUTk9FFNhPOKpBTwAAIA/AACAP2DjEL6NwYI++inSu8w5iL75VFa9//YTPQAAAAAAAAAAjVEQPiiRyD0V/Zq+aqQhvlKXW71WTIS8AAAAAAAAAADtRze+zMTjPpMOdj2ipne+IQ0/veD8ALoAAAAAAAAAAGamSbpcK1a69h4vM6KM8i6HfV66wIrTswAAgD8AAIA/GvckvZ0xrT991g+/dnjNvuPFZzxQ9ia9AAAAAAAAAAAziWK9WgwpPoZyH70RLFm+KCr3POxTBT0AAAAAAAAAABpifr2t8SE+3oE3PbOxUL7OLmK6LZl8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9XvtUn5SGMAWyUTX8BjAF0lEdAkiQuIInjQ3V9lChoBkdAbtI56MR6GGgHTVMBaAhHQJIkVMrVe8h1fZQoaAZHQHFVdkWhysFoB01UAWgIR0CSJF24uscRdX2UKGgGR0BxAjuw5eZ5aAdNQwFoCEdAkiUoMvysjnV9lChoBkdAbgsvA44p+mgHTUcBaAhHQJIl8+dK/VR1fZQoaAZHQG2qqgZjx1BoB003AWgIR0CSJg5uqFRHdX2UKGgGR0ByZFM8HObBaAdNjAFoCEdAkiZYQFs54nV9lChoBkdAcFc4FRpDeGgHTTEBaAhHQJInaO0b9611fZQoaAZHQG+rHHFPznRoB01DAWgIR0CSJ5dn003wdX2UKGgGR0BuWJKzzErHaAdNQAFoCEdAkiiUwJw84nV9lChoBkdAcaXlFMIu5GgHTTsBaAhHQJIp1Z5iVjZ1fZQoaAZHQHMsJoGpuMxoB01TAWgIR0CSPOt+1Bt2dX2UKGgGR0BvT0cdYGMXaAdNTgFoCEdAkj1/mozeoHV9lChoBkdAbyIG9pRGdGgHTWwBaAhHQJJCx8CxNZh1fZQoaAZHQG2fVWsA/9poB01XAWgIR0CSRAyY5T60dX2UKGgGR0Bwaiih37k5aAdNPAFoCEdAkkQtahYeT3V9lChoBkdAcZbqVhTfi2gHTUQBaAhHQJJFKHbh3q11fZQoaAZHQHBivYnOSntoB02IAWgIR0CSRVCVKPGRdX2UKGgGR0BwpZZxJd0JaAdNmgFoCEdAkkXeaa1CxHV9lChoBkdAcNgGgi/wiWgHTYcBaAhHQJJH97/n4fx1fZQoaAZHQHFj6p97WupoB03fAWgIR0CSSerbxmTUdX2UKGgGR0Bxl7nwG4ZuaAdNWAFoCEdAkkrhX4j8k3V9lChoBkdAbdCr6LwWnGgHTfsBaAhHQJJLMXcgyM11fZQoaAZHQHEviRB/qgRoB008AWgIR0CSS5fAsTWYdX2UKGgGR0BtsaXjU/fPaAdNBwJoCEdAkkvOE7GNrHV9lChoBkdAcNSJWvKU3WgHTR8BaAhHQJJMDX5FgD11fZQoaAZHQHBBYWxhUipoB02zAWgIR0CSTJdOZb6hdX2UKGgGR0Bv8bvgFX7taAdNtAFoCEdAkkzKR6nivXV9lChoBkdAbd5FcY64lWgHTU4BaAhHQJJUaZgG8mN1fZQoaAZHQG5Z1VHWjGloB01vAWgIR0CSVIo/iYLLdX2UKGgGR0BxxU8YAKfGaAdNYAFoCEdAklS3PzFuN3V9lChoBkdAcASa4tpVTGgHTXABaAhHQJJUs8U21lZ1fZQoaAZHQHJxUyLyc1BoB00FAWgIR0CSVUuB+WnkdX2UKGgGR0BxOPWkJrtWaAdNJAFoCEdAklYI9LYf4nV9lChoBkdAbv2oOx0MgGgHTcABaAhHQJJXf+hoM8Z1fZQoaAZHQHDFPdyksSVoB01tAWgIR0CSV9R+SbH7dX2UKGgGR0BuOI7cO9WZaAdNWwFoCEdAkll2VE/jbXV9lChoBkdAb1WjDbah6GgHTVQBaAhHQJJZlYRujyp1fZQoaAZHQHDWkA5q/M5oB01lAWgIR0CSWnS5AhStdX2UKGgGR0BxRyUdJaq0aAdNYAFoCEdAklszRlYlp3V9lChoBkdAcUN9QGfPHGgHTXwBaAhHQJJbiowVTJh1fZQoaAZHQG9X39zfaYhoB00aAmgIR0CSXJDvVmSRdX2UKGgGR0BNfBEjPfKqaAdNAQFoCEdAkl7V9v0h/3V9lChoBkdAb4UlCTlkpmgHTRMBaAhHQJJfUOskpqh1fZQoaAZHQEcDExZdOZdoB0v2aAhHQJJgzCl7+kx1fZQoaAZHQHKzEug6EJ1oB003AWgIR0CSYNfPX05EdX2UKGgGR0BwkcHjZL7GaAdNCAJoCEdAkmGB2W6bv3V9lChoBkdAcKDAn2Iwd2gHTVMBaAhHQJJjPImw7kp1fZQoaAZHQHAVkP+XJHRoB00XAWgIR0CSY+yzXz19dX2UKGgGR0BsfxLwnYxtaAdNOAFoCEdAkmWaN6w+uHV9lChoBkdAbffCyhSLqGgHTbEBaAhHQJJmOVPepGZ1fZQoaAZHQFx/MUypJf9oB03oA2gIR0CSZ+w0O3DvdX2UKGgGR0BxvpIg/1QJaAdN0AFoCEdAkmf7/sE7n3V9lChoBkdAb0FI6r/822gHTZ8BaAhHQJJoNkwvg3t1fZQoaAZHQG0XnWz4UN9oB01LAWgIR0CSaCj/uLJkdX2UKGgGR0BwqfPLPldUaAdNLQFoCEdAknw4FJQLu3V9lChoBkdAbiRYukDZDmgHTWwBaAhHQJJ8UUj9n9N1fZQoaAZHQG2V2yLQ5WBoB01ZAWgIR0CSf8YPXkHVdX2UKGgGR0Bx46OLiuMdaAdNUQFoCEdAkn/zzErGznV9lChoBkdAcaVCih37lGgHTRABaAhHQJKBqVAzHjp1fZQoaAZHQHJHKYZ2pyZoB01dAWgIR0CSgavlEJBxdX2UKGgGR0BwMuXmeUY9aAdNXQFoCEdAkoGyu+yquXV9lChoBkdAbq4HEdeY2WgHTQsCaAhHQJKCmQQtjCp1fZQoaAZHQHEClk6Lfk5oB02KAWgIR0CSg/st03fidX2UKGgGR0BxDM+eOGTLaAdNfgFoCEdAkoU0kfLcK3V9lChoBkdAbxBw4sEq2GgHTUIBaAhHQJKHQRzzVc51fZQoaAZHQHIB32ugYgtoB01DAWgIR0CSh93bEgnudX2UKGgGR0BwXNqDbrTqaAdNSwFoCEdAkohgr6LwWnV9lChoBkdAcEc1vVEux2gHTWQBaAhHQJKIqKgqVhV1fZQoaAZHQHI+m51/2CdoB016AWgIR0CSicmcOLBLdX2UKGgGR0BwgRc+qzZ6aAdNJwFoCEdAkouAAU+LWXV9lChoBkdAcq/fW+XZ5GgHTdwBaAhHQJKLyAWi1zB1fZQoaAZHQG3b3Rw6ySpoB03wAWgIR0CSjAfZElVtdX2UKGgGR0BxITXrdFfBaAdNUQFoCEdAkozYIF/x2HV9lChoBkdAcZPmukk8imgHTecBaAhHQJKN6wGGEf11fZQoaAZHQHHixX0XgtRoB006AWgIR0CSjeuTRplCdX2UKGgGR0BszP27FsHjaAdNPwFoCEdAko4VJ+UhV3V9lChoBkdAcAbGN70Fr2gHTUMBaAhHQJKO9vFWGRF1fZQoaAZHQEP/kYoAn2JoB0voaAhHQJKQNuAI6bR1fZQoaAZHQG7I779AHFBoB00eAWgIR0CSkaUSZjQRdX2UKGgGR0BxT8xsVLzxaAdNVwFoCEdAkpHu4kNWl3V9lChoBkdAcHdB55Z8r2gHTXUBaAhHQJKR51QqI8B1fZQoaAZHQHD2cafjCHhoB01DAWgIR0CSk6tTkyULdX2UKGgGR0BtO7mlqJuVaAdNVgFoCEdAkpSRgAp8W3V9lChoBkdARs2K0lZ5iWgHS9poCEdAkpUHZTQ3P3V9lChoBkdAb0mqXF98Z2gHTScCaAhHQJKVsc7yQPt1fZQoaAZHQEwfmT1TR6ZoB0v2aAhHQJKV+37UG3Z1fZQoaAZHQHIoQC4jKPpoB01AAWgIR0CSliyu6mO3dX2UKGgGR0Bwg8QQL/jsaAdNNQFoCEdAkpb/pUxVQ3V9lChoBkdAcevCtihFmWgHTXsBaAhHQJKYTvJA+px1fZQoaAZHQHFU9MfzSThoB012AWgIR0CSmF0Q9RrKdX2UKGgGR0ByFrbAUL2IaAdNtAFoCEdAkpiQKF7D23V9lChoBkdAcjv34bjtHGgHTUoBaAhHQJKY44gieNF1fZQoaAZHQHGiXJ1aGHpoB00vAWgIR0CSmQFSKm8/dX2UKGgGR0BwJ54dIXj3aAdNKAFoCEdAkpoALqlgt3V9lChoBkdAcX21fVqesmgHTRIBaAhHQJKavu2JBPd1fZQoaAZHQG1gu/k/8l5oB009AWgIR0CSnDoS+QEIdX2UKGgGR0BxAHiXIEKWaAdNIAFoCEdAkp7IcWCVbHV9lChoBkdAbFut6HCXQmgHTS8BaAhHQJKe1IiC8OF1fZQoaAZHQHAgKjFhodxoB02gAWgIR0CSn8gr6LwXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8522cf9ca9f7b779a892c594d02480f41b6112b5d1ad2c0d04a65d18c8a06267
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7af74d397ac0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7af74d397b50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7af74d397be0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7af74d397c70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7af74d397d00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7af74d397d90>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7af74d397e20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7af74d397eb0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7af74d397f40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7af74d39c040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7af74d39c0d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7af74d39c160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7af74d5426c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1714136048898255612,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZASb5S85I/Z2oFvws3wr6mlXa+pD4qvgAAAAAAAAAAgApPPSnwLLoWgaE1WuxWMAoNpToLC7e0AACAPwAAgD8a1C+9pM+xPk9jpz1Lb0S+KUA9PV4/SL0AAAAAAAAAAGoynL72mTU/WNjaPVmSkL62mbi9Y2CCPAAAAAAAAAAAGr4ZPdRNjbza7sM7GgCgPFSj+D1mvX69AACAPwAAgD+ah+48xDmpPuZSZL6ew0++570HvY1eZzoAAAAAAAAAAPNxHT5Gm54/gv7cPqnPnr4jjDU+2KNcPQAAAAAAAAAAGl0dveEwirqY/OG6b9PztRo94LribQM6AACAPwAAgD8Auba8T+4HvO5cubuwUTk9FFNhPOKpBTwAAIA/AACAP2DjEL6NwYI++inSu8w5iL75VFa9//YTPQAAAAAAAAAAjVEQPiiRyD0V/Zq+aqQhvlKXW71WTIS8AAAAAAAAAADtRze+zMTjPpMOdj2ipne+IQ0/veD8ALoAAAAAAAAAAGamSbpcK1a69h4vM6KM8i6HfV66wIrTswAAgD8AAIA/GvckvZ0xrT991g+/dnjNvuPFZzxQ9ia9AAAAAAAAAAAziWK9WgwpPoZyH70RLFm+KCr3POxTBT0AAAAAAAAAABpifr2t8SE+3oE3PbOxUL7OLmK6LZl8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9XvtUn5SGMAWyUTX8BjAF0lEdAkiQuIInjQ3V9lChoBkdAbtI56MR6GGgHTVMBaAhHQJIkVMrVe8h1fZQoaAZHQHFVdkWhysFoB01UAWgIR0CSJF24uscRdX2UKGgGR0BxAjuw5eZ5aAdNQwFoCEdAkiUoMvysjnV9lChoBkdAbgsvA44p+mgHTUcBaAhHQJIl8+dK/VR1fZQoaAZHQG2qqgZjx1BoB003AWgIR0CSJg5uqFRHdX2UKGgGR0ByZFM8HObBaAdNjAFoCEdAkiZYQFs54nV9lChoBkdAcFc4FRpDeGgHTTEBaAhHQJInaO0b9611fZQoaAZHQG+rHHFPznRoB01DAWgIR0CSJ5dn003wdX2UKGgGR0BuWJKzzErHaAdNQAFoCEdAkiiUwJw84nV9lChoBkdAcaXlFMIu5GgHTTsBaAhHQJIp1Z5iVjZ1fZQoaAZHQHMsJoGpuMxoB01TAWgIR0CSPOt+1Bt2dX2UKGgGR0BvT0cdYGMXaAdNTgFoCEdAkj1/mozeoHV9lChoBkdAbyIG9pRGdGgHTWwBaAhHQJJCx8CxNZh1fZQoaAZHQG2fVWsA/9poB01XAWgIR0CSRAyY5T60dX2UKGgGR0Bwaiih37k5aAdNPAFoCEdAkkQtahYeT3V9lChoBkdAcZbqVhTfi2gHTUQBaAhHQJJFKHbh3q11fZQoaAZHQHBivYnOSntoB02IAWgIR0CSRVCVKPGRdX2UKGgGR0BwpZZxJd0JaAdNmgFoCEdAkkXeaa1CxHV9lChoBkdAcNgGgi/wiWgHTYcBaAhHQJJH97/n4fx1fZQoaAZHQHFj6p97WupoB03fAWgIR0CSSerbxmTUdX2UKGgGR0Bxl7nwG4ZuaAdNWAFoCEdAkkrhX4j8k3V9lChoBkdAbdCr6LwWnGgHTfsBaAhHQJJLMXcgyM11fZQoaAZHQHEviRB/qgRoB008AWgIR0CSS5fAsTWYdX2UKGgGR0BtsaXjU/fPaAdNBwJoCEdAkkvOE7GNrHV9lChoBkdAcNSJWvKU3WgHTR8BaAhHQJJMDX5FgD11fZQoaAZHQHBBYWxhUipoB02zAWgIR0CSTJdOZb6hdX2UKGgGR0Bv8bvgFX7taAdNtAFoCEdAkkzKR6nivXV9lChoBkdAbd5FcY64lWgHTU4BaAhHQJJUaZgG8mN1fZQoaAZHQG5Z1VHWjGloB01vAWgIR0CSVIo/iYLLdX2UKGgGR0BxxU8YAKfGaAdNYAFoCEdAklS3PzFuN3V9lChoBkdAcASa4tpVTGgHTXABaAhHQJJUs8U21lZ1fZQoaAZHQHJxUyLyc1BoB00FAWgIR0CSVUuB+WnkdX2UKGgGR0BxOPWkJrtWaAdNJAFoCEdAklYI9LYf4nV9lChoBkdAbv2oOx0MgGgHTcABaAhHQJJXf+hoM8Z1fZQoaAZHQHDFPdyksSVoB01tAWgIR0CSV9R+SbH7dX2UKGgGR0BuOI7cO9WZaAdNWwFoCEdAkll2VE/jbXV9lChoBkdAb1WjDbah6GgHTVQBaAhHQJJZlYRujyp1fZQoaAZHQHDWkA5q/M5oB01lAWgIR0CSWnS5AhStdX2UKGgGR0BxRyUdJaq0aAdNYAFoCEdAklszRlYlp3V9lChoBkdAcUN9QGfPHGgHTXwBaAhHQJJbiowVTJh1fZQoaAZHQG9X39zfaYhoB00aAmgIR0CSXJDvVmSRdX2UKGgGR0BNfBEjPfKqaAdNAQFoCEdAkl7V9v0h/3V9lChoBkdAb4UlCTlkpmgHTRMBaAhHQJJfUOskpqh1fZQoaAZHQEcDExZdOZdoB0v2aAhHQJJgzCl7+kx1fZQoaAZHQHKzEug6EJ1oB003AWgIR0CSYNfPX05EdX2UKGgGR0BwkcHjZL7GaAdNCAJoCEdAkmGB2W6bv3V9lChoBkdAcKDAn2Iwd2gHTVMBaAhHQJJjPImw7kp1fZQoaAZHQHAVkP+XJHRoB00XAWgIR0CSY+yzXz19dX2UKGgGR0BsfxLwnYxtaAdNOAFoCEdAkmWaN6w+uHV9lChoBkdAbffCyhSLqGgHTbEBaAhHQJJmOVPepGZ1fZQoaAZHQFx/MUypJf9oB03oA2gIR0CSZ+w0O3DvdX2UKGgGR0BxvpIg/1QJaAdN0AFoCEdAkmf7/sE7n3V9lChoBkdAb0FI6r/822gHTZ8BaAhHQJJoNkwvg3t1fZQoaAZHQG0XnWz4UN9oB01LAWgIR0CSaCj/uLJkdX2UKGgGR0BwqfPLPldUaAdNLQFoCEdAknw4FJQLu3V9lChoBkdAbiRYukDZDmgHTWwBaAhHQJJ8UUj9n9N1fZQoaAZHQG2V2yLQ5WBoB01ZAWgIR0CSf8YPXkHVdX2UKGgGR0Bx46OLiuMdaAdNUQFoCEdAkn/zzErGznV9lChoBkdAcaVCih37lGgHTRABaAhHQJKBqVAzHjp1fZQoaAZHQHJHKYZ2pyZoB01dAWgIR0CSgavlEJBxdX2UKGgGR0BwMuXmeUY9aAdNXQFoCEdAkoGyu+yquXV9lChoBkdAbq4HEdeY2WgHTQsCaAhHQJKCmQQtjCp1fZQoaAZHQHEClk6Lfk5oB02KAWgIR0CSg/st03fidX2UKGgGR0BxDM+eOGTLaAdNfgFoCEdAkoU0kfLcK3V9lChoBkdAbxBw4sEq2GgHTUIBaAhHQJKHQRzzVc51fZQoaAZHQHIB32ugYgtoB01DAWgIR0CSh93bEgnudX2UKGgGR0BwXNqDbrTqaAdNSwFoCEdAkohgr6LwWnV9lChoBkdAcEc1vVEux2gHTWQBaAhHQJKIqKgqVhV1fZQoaAZHQHI+m51/2CdoB016AWgIR0CSicmcOLBLdX2UKGgGR0BwgRc+qzZ6aAdNJwFoCEdAkouAAU+LWXV9lChoBkdAcq/fW+XZ5GgHTdwBaAhHQJKLyAWi1zB1fZQoaAZHQG3b3Rw6ySpoB03wAWgIR0CSjAfZElVtdX2UKGgGR0BxITXrdFfBaAdNUQFoCEdAkozYIF/x2HV9lChoBkdAcZPmukk8imgHTecBaAhHQJKN6wGGEf11fZQoaAZHQHHixX0XgtRoB006AWgIR0CSjeuTRplCdX2UKGgGR0BszP27FsHjaAdNPwFoCEdAko4VJ+UhV3V9lChoBkdAcAbGN70Fr2gHTUMBaAhHQJKO9vFWGRF1fZQoaAZHQEP/kYoAn2JoB0voaAhHQJKQNuAI6bR1fZQoaAZHQG7I779AHFBoB00eAWgIR0CSkaUSZjQRdX2UKGgGR0BxT8xsVLzxaAdNVwFoCEdAkpHu4kNWl3V9lChoBkdAcHdB55Z8r2gHTXUBaAhHQJKR51QqI8B1fZQoaAZHQHD2cafjCHhoB01DAWgIR0CSk6tTkyULdX2UKGgGR0BtO7mlqJuVaAdNVgFoCEdAkpSRgAp8W3V9lChoBkdARs2K0lZ5iWgHS9poCEdAkpUHZTQ3P3V9lChoBkdAb0mqXF98Z2gHTScCaAhHQJKVsc7yQPt1fZQoaAZHQEwfmT1TR6ZoB0v2aAhHQJKV+37UG3Z1fZQoaAZHQHIoQC4jKPpoB01AAWgIR0CSliyu6mO3dX2UKGgGR0Bwg8QQL/jsaAdNNQFoCEdAkpb/pUxVQ3V9lChoBkdAcevCtihFmWgHTXsBaAhHQJKYTvJA+px1fZQoaAZHQHFU9MfzSThoB012AWgIR0CSmF0Q9RrKdX2UKGgGR0ByFrbAUL2IaAdNtAFoCEdAkpiQKF7D23V9lChoBkdAcjv34bjtHGgHTUoBaAhHQJKY44gieNF1fZQoaAZHQHGiXJ1aGHpoB00vAWgIR0CSmQFSKm8/dX2UKGgGR0BwJ54dIXj3aAdNKAFoCEdAkpoALqlgt3V9lChoBkdAcX21fVqesmgHTRIBaAhHQJKavu2JBPd1fZQoaAZHQG1gu/k/8l5oB009AWgIR0CSnDoS+QEIdX2UKGgGR0BxAHiXIEKWaAdNIAFoCEdAkp7IcWCVbHV9lChoBkdAbFut6HCXQmgHTS8BaAhHQJKe1IiC8OF1fZQoaAZHQHAgKjFhodxoB02gAWgIR0CSn8gr6LwXdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25cdc53b0cd50375205e8ead0f241aaa151c0c10fb9e03c02b7849174e4df3fc
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00bdff4902d44437075c163ab92b19685cfe09892de20a63e6ee22b8d79539db
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (156 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 255.95556315174244, "std_reward": 18.519502727656306, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-26T13:21:25.834909"}