{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af74d5426c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714136048898255612, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZASb5S85I/Z2oFvws3wr6mlXa+pD4qvgAAAAAAAAAAgApPPSnwLLoWgaE1WuxWMAoNpToLC7e0AACAPwAAgD8a1C+9pM+xPk9jpz1Lb0S+KUA9PV4/SL0AAAAAAAAAAGoynL72mTU/WNjaPVmSkL62mbi9Y2CCPAAAAAAAAAAAGr4ZPdRNjbza7sM7GgCgPFSj+D1mvX69AACAPwAAgD+ah+48xDmpPuZSZL6ew0++570HvY1eZzoAAAAAAAAAAPNxHT5Gm54/gv7cPqnPnr4jjDU+2KNcPQAAAAAAAAAAGl0dveEwirqY/OG6b9PztRo94LribQM6AACAPwAAgD8Auba8T+4HvO5cubuwUTk9FFNhPOKpBTwAAIA/AACAP2DjEL6NwYI++inSu8w5iL75VFa9//YTPQAAAAAAAAAAjVEQPiiRyD0V/Zq+aqQhvlKXW71WTIS8AAAAAAAAAADtRze+zMTjPpMOdj2ipne+IQ0/veD8ALoAAAAAAAAAAGamSbpcK1a69h4vM6KM8i6HfV66wIrTswAAgD8AAIA/GvckvZ0xrT991g+/dnjNvuPFZzxQ9ia9AAAAAAAAAAAziWK9WgwpPoZyH70RLFm+KCr3POxTBT0AAAAAAAAAABpifr2t8SE+3oE3PbOxUL7OLmK6LZl8vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9XvtUn5SGMAWyUTX8BjAF0lEdAkiQuIInjQ3V9lChoBkdAbtI56MR6GGgHTVMBaAhHQJIkVMrVe8h1fZQoaAZHQHFVdkWhysFoB01UAWgIR0CSJF24uscRdX2UKGgGR0BxAjuw5eZ5aAdNQwFoCEdAkiUoMvysjnV9lChoBkdAbgsvA44p+mgHTUcBaAhHQJIl8+dK/VR1fZQoaAZHQG2qqgZjx1BoB003AWgIR0CSJg5uqFRHdX2UKGgGR0ByZFM8HObBaAdNjAFoCEdAkiZYQFs54nV9lChoBkdAcFc4FRpDeGgHTTEBaAhHQJInaO0b9611fZQoaAZHQG+rHHFPznRoB01DAWgIR0CSJ5dn003wdX2UKGgGR0BuWJKzzErHaAdNQAFoCEdAkiiUwJw84nV9lChoBkdAcaXlFMIu5GgHTTsBaAhHQJIp1Z5iVjZ1fZQoaAZHQHMsJoGpuMxoB01TAWgIR0CSPOt+1Bt2dX2UKGgGR0BvT0cdYGMXaAdNTgFoCEdAkj1/mozeoHV9lChoBkdAbyIG9pRGdGgHTWwBaAhHQJJCx8CxNZh1fZQoaAZHQG2fVWsA/9poB01XAWgIR0CSRAyY5T60dX2UKGgGR0Bwaiih37k5aAdNPAFoCEdAkkQtahYeT3V9lChoBkdAcZbqVhTfi2gHTUQBaAhHQJJFKHbh3q11fZQoaAZHQHBivYnOSntoB02IAWgIR0CSRVCVKPGRdX2UKGgGR0BwpZZxJd0JaAdNmgFoCEdAkkXeaa1CxHV9lChoBkdAcNgGgi/wiWgHTYcBaAhHQJJH97/n4fx1fZQoaAZHQHFj6p97WupoB03fAWgIR0CSSerbxmTUdX2UKGgGR0Bxl7nwG4ZuaAdNWAFoCEdAkkrhX4j8k3V9lChoBkdAbdCr6LwWnGgHTfsBaAhHQJJLMXcgyM11fZQoaAZHQHEviRB/qgRoB008AWgIR0CSS5fAsTWYdX2UKGgGR0BtsaXjU/fPaAdNBwJoCEdAkkvOE7GNrHV9lChoBkdAcNSJWvKU3WgHTR8BaAhHQJJMDX5FgD11fZQoaAZHQHBBYWxhUipoB02zAWgIR0CSTJdOZb6hdX2UKGgGR0Bv8bvgFX7taAdNtAFoCEdAkkzKR6nivXV9lChoBkdAbd5FcY64lWgHTU4BaAhHQJJUaZgG8mN1fZQoaAZHQG5Z1VHWjGloB01vAWgIR0CSVIo/iYLLdX2UKGgGR0BxxU8YAKfGaAdNYAFoCEdAklS3PzFuN3V9lChoBkdAcASa4tpVTGgHTXABaAhHQJJUs8U21lZ1fZQoaAZHQHJxUyLyc1BoB00FAWgIR0CSVUuB+WnkdX2UKGgGR0BxOPWkJrtWaAdNJAFoCEdAklYI9LYf4nV9lChoBkdAbv2oOx0MgGgHTcABaAhHQJJXf+hoM8Z1fZQoaAZHQHDFPdyksSVoB01tAWgIR0CSV9R+SbH7dX2UKGgGR0BuOI7cO9WZaAdNWwFoCEdAkll2VE/jbXV9lChoBkdAb1WjDbah6GgHTVQBaAhHQJJZlYRujyp1fZQoaAZHQHDWkA5q/M5oB01lAWgIR0CSWnS5AhStdX2UKGgGR0BxRyUdJaq0aAdNYAFoCEdAklszRlYlp3V9lChoBkdAcUN9QGfPHGgHTXwBaAhHQJJbiowVTJh1fZQoaAZHQG9X39zfaYhoB00aAmgIR0CSXJDvVmSRdX2UKGgGR0BNfBEjPfKqaAdNAQFoCEdAkl7V9v0h/3V9lChoBkdAb4UlCTlkpmgHTRMBaAhHQJJfUOskpqh1fZQoaAZHQEcDExZdOZdoB0v2aAhHQJJgzCl7+kx1fZQoaAZHQHKzEug6EJ1oB003AWgIR0CSYNfPX05EdX2UKGgGR0BwkcHjZL7GaAdNCAJoCEdAkmGB2W6bv3V9lChoBkdAcKDAn2Iwd2gHTVMBaAhHQJJjPImw7kp1fZQoaAZHQHAVkP+XJHRoB00XAWgIR0CSY+yzXz19dX2UKGgGR0BsfxLwnYxtaAdNOAFoCEdAkmWaN6w+uHV9lChoBkdAbffCyhSLqGgHTbEBaAhHQJJmOVPepGZ1fZQoaAZHQFx/MUypJf9oB03oA2gIR0CSZ+w0O3DvdX2UKGgGR0BxvpIg/1QJaAdN0AFoCEdAkmf7/sE7n3V9lChoBkdAb0FI6r/822gHTZ8BaAhHQJJoNkwvg3t1fZQoaAZHQG0XnWz4UN9oB01LAWgIR0CSaCj/uLJkdX2UKGgGR0BwqfPLPldUaAdNLQFoCEdAknw4FJQLu3V9lChoBkdAbiRYukDZDmgHTWwBaAhHQJJ8UUj9n9N1fZQoaAZHQG2V2yLQ5WBoB01ZAWgIR0CSf8YPXkHVdX2UKGgGR0Bx46OLiuMdaAdNUQFoCEdAkn/zzErGznV9lChoBkdAcaVCih37lGgHTRABaAhHQJKBqVAzHjp1fZQoaAZHQHJHKYZ2pyZoB01dAWgIR0CSgavlEJBxdX2UKGgGR0BwMuXmeUY9aAdNXQFoCEdAkoGyu+yquXV9lChoBkdAbq4HEdeY2WgHTQsCaAhHQJKCmQQtjCp1fZQoaAZHQHEClk6Lfk5oB02KAWgIR0CSg/st03fidX2UKGgGR0BxDM+eOGTLaAdNfgFoCEdAkoU0kfLcK3V9lChoBkdAbxBw4sEq2GgHTUIBaAhHQJKHQRzzVc51fZQoaAZHQHIB32ugYgtoB01DAWgIR0CSh93bEgnudX2UKGgGR0BwXNqDbrTqaAdNSwFoCEdAkohgr6LwWnV9lChoBkdAcEc1vVEux2gHTWQBaAhHQJKIqKgqVhV1fZQoaAZHQHI+m51/2CdoB016AWgIR0CSicmcOLBLdX2UKGgGR0BwgRc+qzZ6aAdNJwFoCEdAkouAAU+LWXV9lChoBkdAcq/fW+XZ5GgHTdwBaAhHQJKLyAWi1zB1fZQoaAZHQG3b3Rw6ySpoB03wAWgIR0CSjAfZElVtdX2UKGgGR0BxITXrdFfBaAdNUQFoCEdAkozYIF/x2HV9lChoBkdAcZPmukk8imgHTecBaAhHQJKN6wGGEf11fZQoaAZHQHHixX0XgtRoB006AWgIR0CSjeuTRplCdX2UKGgGR0BszP27FsHjaAdNPwFoCEdAko4VJ+UhV3V9lChoBkdAcAbGN70Fr2gHTUMBaAhHQJKO9vFWGRF1fZQoaAZHQEP/kYoAn2JoB0voaAhHQJKQNuAI6bR1fZQoaAZHQG7I779AHFBoB00eAWgIR0CSkaUSZjQRdX2UKGgGR0BxT8xsVLzxaAdNVwFoCEdAkpHu4kNWl3V9lChoBkdAcHdB55Z8r2gHTXUBaAhHQJKR51QqI8B1fZQoaAZHQHD2cafjCHhoB01DAWgIR0CSk6tTkyULdX2UKGgGR0BtO7mlqJuVaAdNVgFoCEdAkpSRgAp8W3V9lChoBkdARs2K0lZ5iWgHS9poCEdAkpUHZTQ3P3V9lChoBkdAb0mqXF98Z2gHTScCaAhHQJKVsc7yQPt1fZQoaAZHQEwfmT1TR6ZoB0v2aAhHQJKV+37UG3Z1fZQoaAZHQHIoQC4jKPpoB01AAWgIR0CSliyu6mO3dX2UKGgGR0Bwg8QQL/jsaAdNNQFoCEdAkpb/pUxVQ3V9lChoBkdAcevCtihFmWgHTXsBaAhHQJKYTvJA+px1fZQoaAZHQHFU9MfzSThoB012AWgIR0CSmF0Q9RrKdX2UKGgGR0ByFrbAUL2IaAdNtAFoCEdAkpiQKF7D23V9lChoBkdAcjv34bjtHGgHTUoBaAhHQJKY44gieNF1fZQoaAZHQHGiXJ1aGHpoB00vAWgIR0CSmQFSKm8/dX2UKGgGR0BwJ54dIXj3aAdNKAFoCEdAkpoALqlgt3V9lChoBkdAcX21fVqesmgHTRIBaAhHQJKavu2JBPd1fZQoaAZHQG1gu/k/8l5oB009AWgIR0CSnDoS+QEIdX2UKGgGR0BxAHiXIEKWaAdNIAFoCEdAkp7IcWCVbHV9lChoBkdAbFut6HCXQmgHTS8BaAhHQJKe1IiC8OF1fZQoaAZHQHAgKjFhodxoB02gAWgIR0CSn8gr6LwXdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}