AndrewL088 commited on
Commit
6793765
·
1 Parent(s): a073c11

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.23 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d25ae674e1e32acd92d804c95b747b4bfdcdb5bdf9bdc36d601f867e88f82ab
3
+ size 106915
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b6ef920d360>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7b6ef9201e00>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694525876893187047,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkvtVPl0jk7txE+A+kvtVPl0jk7txE+A+Kdbwvba32T4paj2+kvtVPl0jk7txE+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9O3uvfW+Xr9UNM8/DoGZP2xS07/R7b0/VBtVv/n1DT8oGDE+THeOvaEgjL9WmLm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACS+1U+XSOTu3ET4D4quPk+Ok7ruownwT6S+1U+XSOTu3ET4D4quPk+Ok7ruownwT4p1vC9trfZPilqPb7Ftfe/QsfTP4eXrr+S+1U+XSOTu3ET4D4quPk+Ok7ruownwT6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.20896748 -0.0044903 0.43764833]\n [ 0.20896748 -0.0044903 0.43764833]\n [-0.11759598 0.42522973 -0.18497528]\n [ 0.20896748 -0.0044903 0.43764833]]",
34
+ "desired_goal": "[[-0.1166648 -0.8701013 1.6187844 ]\n [ 1.1992509 -1.6509528 1.4838201 ]\n [-0.83244824 0.5545345 0.17294371]\n [-0.06956348 -1.0947458 -1.4499614 ]]",
35
+ "observation": "[[ 2.0896748e-01 -4.4902996e-03 4.3764833e-01 4.8773319e-01\n -1.7952390e-03 3.7725484e-01]\n [ 2.0896748e-01 -4.4902996e-03 4.3764833e-01 4.8773319e-01\n -1.7952390e-03 3.7725484e-01]\n [-1.1759598e-01 4.2522973e-01 -1.8497528e-01 -1.9352347e+00\n 1.6545184e+00 -1.3639992e+00]\n [ 2.0896748e-01 -4.4902996e-03 4.3764833e-01 4.8773319e-01\n -1.7952390e-03 3.7725484e-01]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl31jva5d1L0caH0+boCQvFgKHz19+Xs+Tz2Dvejn0T2WRYU+1rDHPWi58z2a11s7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.05553969 -0.1036943 0.24746746]\n [-0.01763937 0.03882822 0.24606891]\n [-0.06408178 0.10249311 0.26029652]\n [ 0.09750526 0.11900598 0.00335453]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9B6AvtdAxCMAWyUSwSMAXSUR0CkL/AhKUV0dX2UKGgGR7+47CBPKuB+aAdLAmgIR0CkL68yWRigdX2UKGgGR7+xg5R0lqrSaAdLAmgIR0CkL7cFhXr/dX2UKGgGR7/KGwiaAnUlaAdLA2gIR0CkL2zjWCmNdX2UKGgGR7/R5f+jua4MaAdLBGgIR0CkMDlIEr5JdX2UKGgGR7/N+CsfaHsUaAdLA2gIR0CkL/zkIX0odX2UKGgGR7+PVZs9B8hLaAdLAWgIR0CkL3Him2srdX2UKGgGR7/ArZJ04iosaAdLAmgIR0CkMAeGoJiRdX2UKGgGR7/P30wrUb1iaAdLA2gIR0CkL8cKPXCkdX2UKGgGR7/AblzU7Sy/aAdLAmgIR0CkL3zFVDKHdX2UKGgGR7/YyJbdJrckaAdLBGgIR0CkME0Pxx1gdX2UKGgGR7+4IkZ75VOsaAdLAmgIR0CkL89roGILdX2UKGgGR7/K1WKdhAnlaAdLA2gIR0CkMBStvGZNdX2UKGgGR7/QAJLM9r44aAdLA2gIR0CkL4lVcUuddX2UKGgGR7/QXyAhB7eEaAdLA2gIR0CkMFwJXyRTdX2UKGgGR7/TrWiDdxhlaAdLA2gIR0CkL96a1Cw9dX2UKGgGR7/HXiBGx2SuaAdLA2gIR0CkMCRP420idX2UKGgGR7/RpLEk0JnhaAdLA2gIR0CkL5lLnLaFdX2UKGgGR7/RkyDZlFtsaAdLA2gIR0CkMGlcpsoEdX2UKGgGR7/PGHYYixFBaAdLA2gIR0CkL+veYUnHdX2UKGgGR7/BntfG+9J0aAdLAmgIR0CkL6Ggi/widX2UKGgGR7/Oa4tpVS4waAdLA2gIR0CkMDFN+LFXdX2UKGgGR7++v5gw482aaAdLAmgIR0CkL/bMgU1ydX2UKGgGR7/Kv/zasZHeaAdLA2gIR0CkMHlj3EhrdX2UKGgGR7/Ty6MBIWgwaAdLA2gIR0CkL7NcnmaIdX2UKGgGR7/NxIatLcsUaAdLA2gIR0CkMERw6ySndX2UKGgGR7+jvmYBvJiiaAdLAWgIR0CkL7pIDoyLdX2UKGgGR7/NUwztTkyUaAdLA2gIR0CkMAqLsKLLdX2UKGgGR7/U5I6Kcd5qaAdLA2gIR0CkMI2W6bvxdX2UKGgGR7/Eikfs/pt8aAdLAmgIR0CkMFDua4MGdX2UKGgGR7+bfgrH2h7FaAdLAWgIR0CkMBAPNFBqdX2UKGgGR7/Lx95Qgs9TaAdLA2gIR0CkL8wsPJ7tdX2UKGgGR7/K5LAYYR/WaAdLA2gIR0CkMJzS1E3LdX2UKGgGR7/J6zmfXf65aAdLA2gIR0CkMGBGx2SudX2UKGgGR7/TQF9roGILaAdLA2gIR0CkMB9/rjYJdX2UKGgGR7+LRv3rUsnRaAdLAWgIR0CkMGS925hCdX2UKGgGR7/Kw2VE/jbSaAdLA2gIR0CkL9mR3eN2dX2UKGgGR7+7HDJlrdnCaAdLAmgIR0CkMKXiR4hVdX2UKGgGR7/ADOkcjqwAaAdLAmgIR0CkMG8Dr7fpdX2UKGgGR7/LSmZVn27GaAdLA2gIR0CkMC4u9OARdX2UKGgGR7+7jvNNahYeaAdLAmgIR0CkMLBYmsvJdX2UKGgGR7/VrlNlAeJYaAdLA2gIR0CkL+g8r7O3dX2UKGgGR7/SO1OTJQtSaAdLA2gIR0CkMHxZ2ZAqdX2UKGgGR7/VwD/2kBS2aAdLA2gIR0CkMDt+CsfadX2UKGgGR7/PSDyvs7dSaAdLA2gIR0CkML16Vt4zdX2UKGgGR7/R3jMmnfl7aAdLA2gIR0CkL/VKwpvxdX2UKGgGR7+LGNrCWNWEaAdLAWgIR0CkMMPES/TLdX2UKGgGR7/Q46fapPykaAdLA2gIR0CkMEnkLhJidX2UKGgGR7/bP07KaG5+aAdLBGgIR0CkMI8hC+lCdX2UKGgGR7/LEbYK6WgOaAdLA2gIR0CkMAPR7Z3+dX2UKGgGR7/BtHhCMPz4aAdLAmgIR0CkMFJ8F6iTdX2UKGgGR7/Xkz41xbSraAdLBGgIR0CkMNR0EHMVdX2UKGgGR7/CrlNlAeJYaAdLAmgIR0CkMAxmkFfRdX2UKGgGR7/TH+ZPVNHpaAdLA2gIR0CkMJ8zQ/ordX2UKGgGR7+81CPZIxxlaAdLAmgIR0CkMF5LAYYSdX2UKGgGR7/SSV4X40uUaAdLA2gIR0CkMOUJWvKVdX2UKGgGR7/S6PbO/tY0aAdLA2gIR0CkMB19F4LUdX2UKGgGR7/Qd1uBMBZIaAdLA2gIR0CkMGyQxN7CdX2UKGgGR7/ALQXyiEg4aAdLAmgIR0CkMO9C/oJRdX2UKGgGR7/aUcXFcY65aAdLBGgIR0CkMLLpiZv2dX2UKGgGR7/ApkPMB6rvaAdLAmgIR0CkMHhWgezVdX2UKGgGR7/QOQyRB/qgaAdLA2gIR0CkMC5PM0P6dX2UKGgGR7/KAjps41gqaAdLA2gIR0CkMP6Yu01JdX2UKGgGR7/IRs/IKc/daAdLA2gIR0CkMMH7HhjwdX2UKGgGR7/FStNi6QNkaAdLAmgIR0CkMIEU0vXcdX2UKGgGR7+6ZTho/RmcaAdLAmgIR0CkMDbkn1FpdX2UKGgGR7/AUr08NhE0aAdLAmgIR0CkMIklNUOvdX2UKGgGR7/R/BWPtD2KaAdLA2gIR0CkMQ1U+9rXdX2UKGgGR7/LQAuIyj59aAdLA2gIR0CkMEVPN3W4dX2UKGgGR7/W1uzhP0qZaAdLBGgIR0CkMNUEHMUzdX2UKGgGR7/TCr92ovSMaAdLA2gIR0CkMJjA8B+4dX2UKGgGR7/Ew5/9YOlPaAdLAmgIR0CkMN4REnb7dX2UKGgGR7/OVj7Q9ic5aAdLA2gIR0CkMFK7I1cddX2UKGgGR7/Y5wfhddE9aAdLBGgIR0CkMR9wvQF+dX2UKGgGR7+fGlyimEXdaAdLAWgIR0CkMOK64Ds/dX2UKGgGR7/Q73fyf+S9aAdLA2gIR0CkMKf029+PdX2UKGgGR7/Yj/Mnqmj1aAdLA2gIR0CkMS3FkxyodX2UKGgGR7+7+l0o0ALiaAdLAmgIR0CkMLAF5fMOdX2UKGgGR7/ZXYDklu3uaAdLBGgIR0CkMGYPoV2zdX2UKGgGR7/ZmUW2w3YMaAdLBGgIR0CkMPXGn4widX2UKGgGR7++yNXHR1HOaAdLAmgIR0CkMLiPp6hQdX2UKGgGR7/Rsny/bj95aAdLA2gIR0CkMTzZg5R1dX2UKGgGR7+8+wC8vmHQaAdLAmgIR0CkMQAnDziCdX2UKGgGR7/VlpGnXNC7aAdLA2gIR0CkMHUDEFW5dX2UKGgGR7+w+otL+PzWaAdLAmgIR0CkMMNke6qbdX2UKGgGR7+2u+yquKXOaAdLAmgIR0CkMQiIcinpdX2UKGgGR7+6zF+/gzguaAdLAmgIR0CkMMw0O3DvdX2UKGgGR7/P/82rGR3eaAdLA2gIR0CkMIH6VMVUdX2UKGgGR7/bAB1cMVk+aAdLBGgIR0CkMU6asp5NdX2UKGgGR7+waHbh3qzJaAdLAmgIR0CkMRHuiN83dX2UKGgGR7+gTGo73fygaAdLAWgIR0CkMVTJQtSRdX2UKGgGR7++QT238XN1aAdLAmgIR0CkMNbfHggpdX2UKGgGR7/BSgGr0aqCaAdLAmgIR0CkMRvddmg8dX2UKGgGR79oPXkHUtqYaAdLAWgIR0CkMNrcj7hvdX2UKGgGR7/MTwlSjxkNaAdLA2gIR0CkMJCp3os7dX2UKGgGR7/FYlpoK2KEaAdLAmgIR0CkMV0DEFW5dX2UKGgGR7/EdWhh6SkkaAdLAmgIR0CkMOKXnhbXdX2UKGgGR7/DjAi3XqZ/aAdLAmgIR0CkMWSgPEsKdX2UKGgGR7/PFWn0kGA1aAdLA2gIR0CkMSfnW8RMdX2UKGgGR7/O43m3fAKwaAdLA2gIR0CkMJ0OEug6dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3ca5452b4144950ec97d129d1fe031d699dfda296bf6173547518e5dce96a21
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce92048f6d7087738027f2a6f37b79f4e1d217386785946b1d0e8d3a3079f84
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b6ef920d360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b6ef9201e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694525876893187047, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkvtVPl0jk7txE+A+kvtVPl0jk7txE+A+Kdbwvba32T4paj2+kvtVPl0jk7txE+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9O3uvfW+Xr9UNM8/DoGZP2xS07/R7b0/VBtVv/n1DT8oGDE+THeOvaEgjL9WmLm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACS+1U+XSOTu3ET4D4quPk+Ok7ruownwT6S+1U+XSOTu3ET4D4quPk+Ok7ruownwT4p1vC9trfZPilqPb7Ftfe/QsfTP4eXrr+S+1U+XSOTu3ET4D4quPk+Ok7ruownwT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.20896748 -0.0044903 0.43764833]\n [ 0.20896748 -0.0044903 0.43764833]\n [-0.11759598 0.42522973 -0.18497528]\n [ 0.20896748 -0.0044903 0.43764833]]", "desired_goal": "[[-0.1166648 -0.8701013 1.6187844 ]\n [ 1.1992509 -1.6509528 1.4838201 ]\n [-0.83244824 0.5545345 0.17294371]\n [-0.06956348 -1.0947458 -1.4499614 ]]", "observation": "[[ 2.0896748e-01 -4.4902996e-03 4.3764833e-01 4.8773319e-01\n -1.7952390e-03 3.7725484e-01]\n [ 2.0896748e-01 -4.4902996e-03 4.3764833e-01 4.8773319e-01\n -1.7952390e-03 3.7725484e-01]\n [-1.1759598e-01 4.2522973e-01 -1.8497528e-01 -1.9352347e+00\n 1.6545184e+00 -1.3639992e+00]\n [ 2.0896748e-01 -4.4902996e-03 4.3764833e-01 4.8773319e-01\n -1.7952390e-03 3.7725484e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl31jva5d1L0caH0+boCQvFgKHz19+Xs+Tz2Dvejn0T2WRYU+1rDHPWi58z2a11s7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05553969 -0.1036943 0.24746746]\n [-0.01763937 0.03882822 0.24606891]\n [-0.06408178 0.10249311 0.26029652]\n [ 0.09750526 0.11900598 0.00335453]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9B6AvtdAxCMAWyUSwSMAXSUR0CkL/AhKUV0dX2UKGgGR7+47CBPKuB+aAdLAmgIR0CkL68yWRigdX2UKGgGR7+xg5R0lqrSaAdLAmgIR0CkL7cFhXr/dX2UKGgGR7/KGwiaAnUlaAdLA2gIR0CkL2zjWCmNdX2UKGgGR7/R5f+jua4MaAdLBGgIR0CkMDlIEr5JdX2UKGgGR7/N+CsfaHsUaAdLA2gIR0CkL/zkIX0odX2UKGgGR7+PVZs9B8hLaAdLAWgIR0CkL3Him2srdX2UKGgGR7/ArZJ04iosaAdLAmgIR0CkMAeGoJiRdX2UKGgGR7/P30wrUb1iaAdLA2gIR0CkL8cKPXCkdX2UKGgGR7/AblzU7Sy/aAdLAmgIR0CkL3zFVDKHdX2UKGgGR7/YyJbdJrckaAdLBGgIR0CkME0Pxx1gdX2UKGgGR7+4IkZ75VOsaAdLAmgIR0CkL89roGILdX2UKGgGR7/K1WKdhAnlaAdLA2gIR0CkMBStvGZNdX2UKGgGR7/QAJLM9r44aAdLA2gIR0CkL4lVcUuddX2UKGgGR7/QXyAhB7eEaAdLA2gIR0CkMFwJXyRTdX2UKGgGR7/TrWiDdxhlaAdLA2gIR0CkL96a1Cw9dX2UKGgGR7/HXiBGx2SuaAdLA2gIR0CkMCRP420idX2UKGgGR7/RpLEk0JnhaAdLA2gIR0CkL5lLnLaFdX2UKGgGR7/RkyDZlFtsaAdLA2gIR0CkMGlcpsoEdX2UKGgGR7/PGHYYixFBaAdLA2gIR0CkL+veYUnHdX2UKGgGR7/BntfG+9J0aAdLAmgIR0CkL6Ggi/widX2UKGgGR7/Oa4tpVS4waAdLA2gIR0CkMDFN+LFXdX2UKGgGR7++v5gw482aaAdLAmgIR0CkL/bMgU1ydX2UKGgGR7/Kv/zasZHeaAdLA2gIR0CkMHlj3EhrdX2UKGgGR7/Ty6MBIWgwaAdLA2gIR0CkL7NcnmaIdX2UKGgGR7/NxIatLcsUaAdLA2gIR0CkMERw6ySndX2UKGgGR7+jvmYBvJiiaAdLAWgIR0CkL7pIDoyLdX2UKGgGR7/NUwztTkyUaAdLA2gIR0CkMAqLsKLLdX2UKGgGR7/U5I6Kcd5qaAdLA2gIR0CkMI2W6bvxdX2UKGgGR7/Eikfs/pt8aAdLAmgIR0CkMFDua4MGdX2UKGgGR7+bfgrH2h7FaAdLAWgIR0CkMBAPNFBqdX2UKGgGR7/Lx95Qgs9TaAdLA2gIR0CkL8wsPJ7tdX2UKGgGR7/K5LAYYR/WaAdLA2gIR0CkMJzS1E3LdX2UKGgGR7/J6zmfXf65aAdLA2gIR0CkMGBGx2SudX2UKGgGR7/TQF9roGILaAdLA2gIR0CkMB9/rjYJdX2UKGgGR7+LRv3rUsnRaAdLAWgIR0CkMGS925hCdX2UKGgGR7/Kw2VE/jbSaAdLA2gIR0CkL9mR3eN2dX2UKGgGR7+7HDJlrdnCaAdLAmgIR0CkMKXiR4hVdX2UKGgGR7/ADOkcjqwAaAdLAmgIR0CkMG8Dr7fpdX2UKGgGR7/LSmZVn27GaAdLA2gIR0CkMC4u9OARdX2UKGgGR7+7jvNNahYeaAdLAmgIR0CkMLBYmsvJdX2UKGgGR7/VrlNlAeJYaAdLA2gIR0CkL+g8r7O3dX2UKGgGR7/SO1OTJQtSaAdLA2gIR0CkMHxZ2ZAqdX2UKGgGR7/VwD/2kBS2aAdLA2gIR0CkMDt+CsfadX2UKGgGR7/PSDyvs7dSaAdLA2gIR0CkML16Vt4zdX2UKGgGR7/R3jMmnfl7aAdLA2gIR0CkL/VKwpvxdX2UKGgGR7+LGNrCWNWEaAdLAWgIR0CkMMPES/TLdX2UKGgGR7/Q46fapPykaAdLA2gIR0CkMEnkLhJidX2UKGgGR7/bP07KaG5+aAdLBGgIR0CkMI8hC+lCdX2UKGgGR7/LEbYK6WgOaAdLA2gIR0CkMAPR7Z3+dX2UKGgGR7/BtHhCMPz4aAdLAmgIR0CkMFJ8F6iTdX2UKGgGR7/Xkz41xbSraAdLBGgIR0CkMNR0EHMVdX2UKGgGR7/CrlNlAeJYaAdLAmgIR0CkMAxmkFfRdX2UKGgGR7/TH+ZPVNHpaAdLA2gIR0CkMJ8zQ/ordX2UKGgGR7+81CPZIxxlaAdLAmgIR0CkMF5LAYYSdX2UKGgGR7/SSV4X40uUaAdLA2gIR0CkMOUJWvKVdX2UKGgGR7/S6PbO/tY0aAdLA2gIR0CkMB19F4LUdX2UKGgGR7/Qd1uBMBZIaAdLA2gIR0CkMGyQxN7CdX2UKGgGR7/ALQXyiEg4aAdLAmgIR0CkMO9C/oJRdX2UKGgGR7/aUcXFcY65aAdLBGgIR0CkMLLpiZv2dX2UKGgGR7/ApkPMB6rvaAdLAmgIR0CkMHhWgezVdX2UKGgGR7/QOQyRB/qgaAdLA2gIR0CkMC5PM0P6dX2UKGgGR7/KAjps41gqaAdLA2gIR0CkMP6Yu01JdX2UKGgGR7/IRs/IKc/daAdLA2gIR0CkMMH7HhjwdX2UKGgGR7/FStNi6QNkaAdLAmgIR0CkMIEU0vXcdX2UKGgGR7+6ZTho/RmcaAdLAmgIR0CkMDbkn1FpdX2UKGgGR7/AUr08NhE0aAdLAmgIR0CkMIklNUOvdX2UKGgGR7/R/BWPtD2KaAdLA2gIR0CkMQ1U+9rXdX2UKGgGR7/LQAuIyj59aAdLA2gIR0CkMEVPN3W4dX2UKGgGR7/W1uzhP0qZaAdLBGgIR0CkMNUEHMUzdX2UKGgGR7/TCr92ovSMaAdLA2gIR0CkMJjA8B+4dX2UKGgGR7/Ew5/9YOlPaAdLAmgIR0CkMN4REnb7dX2UKGgGR7/OVj7Q9ic5aAdLA2gIR0CkMFK7I1cddX2UKGgGR7/Y5wfhddE9aAdLBGgIR0CkMR9wvQF+dX2UKGgGR7+fGlyimEXdaAdLAWgIR0CkMOK64Ds/dX2UKGgGR7/Q73fyf+S9aAdLA2gIR0CkMKf029+PdX2UKGgGR7/Yj/Mnqmj1aAdLA2gIR0CkMS3FkxyodX2UKGgGR7+7+l0o0ALiaAdLAmgIR0CkMLAF5fMOdX2UKGgGR7/ZXYDklu3uaAdLBGgIR0CkMGYPoV2zdX2UKGgGR7/ZmUW2w3YMaAdLBGgIR0CkMPXGn4widX2UKGgGR7++yNXHR1HOaAdLAmgIR0CkMLiPp6hQdX2UKGgGR7/Rsny/bj95aAdLA2gIR0CkMTzZg5R1dX2UKGgGR7+8+wC8vmHQaAdLAmgIR0CkMQAnDziCdX2UKGgGR7/VlpGnXNC7aAdLA2gIR0CkMHUDEFW5dX2UKGgGR7+w+otL+PzWaAdLAmgIR0CkMMNke6qbdX2UKGgGR7+2u+yquKXOaAdLAmgIR0CkMQiIcinpdX2UKGgGR7+6zF+/gzguaAdLAmgIR0CkMMw0O3DvdX2UKGgGR7/P/82rGR3eaAdLA2gIR0CkMIH6VMVUdX2UKGgGR7/bAB1cMVk+aAdLBGgIR0CkMU6asp5NdX2UKGgGR7+waHbh3qzJaAdLAmgIR0CkMRHuiN83dX2UKGgGR7+gTGo73fygaAdLAWgIR0CkMVTJQtSRdX2UKGgGR7++QT238XN1aAdLAmgIR0CkMNbfHggpdX2UKGgGR7/BSgGr0aqCaAdLAmgIR0CkMRvddmg8dX2UKGgGR79oPXkHUtqYaAdLAWgIR0CkMNrcj7hvdX2UKGgGR7/MTwlSjxkNaAdLA2gIR0CkMJCp3os7dX2UKGgGR7/FYlpoK2KEaAdLAmgIR0CkMV0DEFW5dX2UKGgGR7/EdWhh6SkkaAdLAmgIR0CkMOKXnhbXdX2UKGgGR7/DjAi3XqZ/aAdLAmgIR0CkMWSgPEsKdX2UKGgGR7/PFWn0kGA1aAdLA2gIR0CkMSfnW8RMdX2UKGgGR7/O43m3fAKwaAdLA2gIR0CkMJ0OEug6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (675 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.22550308108329772, "std_reward": 0.08900737781664415, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-12T14:31:56.797790"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b23592f0fa56d2dd30693d47023d0230eb67b876f2552892491cc279c6bb7b
3
+ size 2623