AndrewMcDowell commited on
Commit
9494cbb
·
1 Parent(s): 3a54f37

Training in progress, step 1000

Browse files
.ipynb_checkpoints/eval-checkpoint.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from datasets import load_dataset, load_metric, Audio, Dataset
3
+ from transformers import pipeline, AutoFeatureExtractor
4
+ import re
5
+ import argparse
6
+ import unicodedata
7
+ from typing import Dict
8
+
9
+
10
+ def log_results(result: Dataset, args: Dict[str, str]):
11
+ """ DO NOT CHANGE. This function computes and logs the result metrics. """
12
+
13
+ log_outputs = args.log_outputs
14
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
15
+
16
+ # load metric
17
+ wer = load_metric("wer")
18
+ cer = load_metric("cer")
19
+
20
+ # compute metrics
21
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
22
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
23
+
24
+ # print & log results
25
+ result_str = (
26
+ f"WER: {wer_result}\n"
27
+ f"CER: {cer_result}"
28
+ )
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ def normalize_text(text: str) -> str:
52
+ """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
53
+
54
+ from pykakasi import kakasi
55
+
56
+ kakasi = kakasi()
57
+ kakasi.setMode('J', 'H') #Convert from kanji to hiragana
58
+ conv = kakasi.getConverter()
59
+ chars_to_ignore_regex = '[\,\?\!\-\;\:\"\“\%\‘\”\�\—\’\…\–\(\,\[\]\)\(\!\/\「\」\『\』]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
60
+
61
+
62
+ # remove punctuation
63
+ text = conv.do(re.sub(chars_to_ignore_regex, "", text))
64
+
65
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
66
+ # note that order is important here!
67
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
68
+
69
+ for t in token_sequences_to_ignore:
70
+ text = " ".join(text.split(t))
71
+
72
+ return text
73
+
74
+
75
+ def main(args):
76
+ # load dataset
77
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
78
+
79
+ # for testing: only process the first two examples as a test
80
+ # dataset = dataset.select(range(10))
81
+
82
+ # load processor
83
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
84
+ sampling_rate = feature_extractor.sampling_rate
85
+
86
+ # resample audio
87
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
88
+
89
+ # load eval pipeline
90
+ asr = pipeline("automatic-speech-recognition", model=args.model_id)
91
+
92
+ # map function to decode audio
93
+ def map_to_pred(batch):
94
+ prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
95
+
96
+ batch["prediction"] = prediction["text"]
97
+ batch["target"] = normalize_text(batch["sentence"])
98
+ return batch
99
+
100
+ # run inference on all examples
101
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
102
+
103
+ # compute and log_results
104
+ # do not change function below
105
+ log_results(result, args)
106
+
107
+
108
+ if __name__ == "__main__":
109
+ parser = argparse.ArgumentParser()
110
+
111
+ parser.add_argument(
112
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
113
+ )
114
+ parser.add_argument(
115
+ "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
116
+ )
117
+ parser.add_argument(
118
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
119
+ )
120
+ parser.add_argument(
121
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
122
+ )
123
+ parser.add_argument(
124
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
125
+ )
126
+ parser.add_argument(
127
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
128
+ )
129
+ parser.add_argument(
130
+ "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
131
+ )
132
+ args = parser.parse_args()
133
+
134
+ main(args)
.ipynb_checkpoints/eval_results-checkpoint.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 50.0,
3
+ "eval_cer": 0.1826705782774121,
4
+ "eval_loss": 0.6643062829971313,
5
+ "eval_runtime": 307.697,
6
+ "eval_samples": 4466,
7
+ "eval_samples_per_second": 14.514,
8
+ "eval_steps_per_second": 1.817,
9
+ "eval_wer": 1.0241664801969121
10
+ }
.ipynb_checkpoints/log_mozilla-foundation_common_voice_8_0_ja_test_predictions-checkpoint.txt ADDED
The diff for this file is too large to render. See raw diff
 
.ipynb_checkpoints/log_mozilla-foundation_common_voice_8_0_ja_test_targets-checkpoint.txt ADDED
The diff for this file is too large to render. See raw diff
 
.ipynb_checkpoints/log_speech-recognition-community-v2_dev_data_ja_validation_predictions-checkpoint.txt ADDED
The diff for this file is too large to render. See raw diff
 
.ipynb_checkpoints/log_speech-recognition-community-v2_dev_data_ja_validation_targets-checkpoint.txt ADDED
The diff for this file is too large to render. See raw diff
 
.ipynb_checkpoints/mozilla-foundation_common_voice_8_0_ja_test_eval_results-checkpoint.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ WER: 0.9675266903914591
2
+ CER: 0.30694865529668464
.ipynb_checkpoints/run_speech_recognition_ctc_bnb-checkpoint.py CHANGED
@@ -155,7 +155,7 @@ class DataTrainingArguments:
155
  eval_split_name: str = field(
156
  default="test",
157
  metadata={
158
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
159
  },
160
  )
161
  audio_column_name: str = field(
 
155
  eval_split_name: str = field(
156
  default="test",
157
  metadata={
158
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
159
  },
160
  )
161
  audio_column_name: str = field(
.ipynb_checkpoints/run_training-checkpoint.sh CHANGED
@@ -7,8 +7,9 @@ python run_speech_recognition_ctc_bnb.py \
7
  --num_train_epochs="50" \
8
  --per_device_train_batch_size="32" \
9
  --per_device_eval_batch_size="8" \
10
- --learning_rate="1e-4" \
11
- --warmup_steps="2000" \
 
12
  --length_column_name="input_length" \
13
  --evaluation_strategy="steps" \
14
  --text_column_name="sentence" \
 
7
  --num_train_epochs="50" \
8
  --per_device_train_batch_size="32" \
9
  --per_device_eval_batch_size="8" \
10
+ --gradient_accumulation_steps="4" \
11
+ --learning_rate="7.5e-5" \
12
+ --warmup_steps="1500" \
13
  --length_column_name="input_length" \
14
  --evaluation_strategy="steps" \
15
  --text_column_name="sentence" \
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:56253cab1c0408c1004e62a7377543a509069ec8b0aaba1aaaa28b3041b8cf29
3
  size 3851240177
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:490634cd84fbf3811afe86fb73dee322c6704b2e70e34a9b04adc71e593d0f24
3
  size 3851240177
run_speech_recognition_ctc_bnb.py CHANGED
@@ -155,7 +155,7 @@ class DataTrainingArguments:
155
  eval_split_name: str = field(
156
  default="test",
157
  metadata={
158
- "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
159
  },
160
  )
161
  audio_column_name: str = field(
 
155
  eval_split_name: str = field(
156
  default="test",
157
  metadata={
158
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
159
  },
160
  )
161
  audio_column_name: str = field(
run_training.sh CHANGED
@@ -7,8 +7,9 @@ python run_speech_recognition_ctc_bnb.py \
7
  --num_train_epochs="50" \
8
  --per_device_train_batch_size="32" \
9
  --per_device_eval_batch_size="8" \
10
- --learning_rate="1e-4" \
11
- --warmup_steps="2000" \
 
12
  --length_column_name="input_length" \
13
  --evaluation_strategy="steps" \
14
  --text_column_name="sentence" \
 
7
  --num_train_epochs="50" \
8
  --per_device_train_batch_size="32" \
9
  --per_device_eval_batch_size="8" \
10
+ --gradient_accumulation_steps="4" \
11
+ --learning_rate="7.5e-5" \
12
+ --warmup_steps="1500" \
13
  --length_column_name="input_length" \
14
  --evaluation_strategy="steps" \
15
  --text_column_name="sentence" \
special_tokens_map.json CHANGED
@@ -1 +1 @@
1
- {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c4677067a838996bf37783552c2516b25469b06a2d8d9c31d21a824ac3f516a7
3
  size 2991
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0786d1d55e0806ed6c3ec835e9f4c65da62f2a569bf56129fbdf16fbc6e4d544
3
  size 2991