File size: 3,815 Bytes
e7af1f8
699a1c0
 
e7af1f8
 
699a1c0
 
e7af1f8
020ddc4
 
e7af1f8
 
 
504d95e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe7dd5e
 
 
 
 
 
 
 
 
 
 
 
 
 
e7af1f8
 
 
 
 
 
 
699a1c0
504d95e
fe7dd5e
 
 
 
 
 
 
504d95e
e7af1f8
699a1c0
 
b4be586
e7af1f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de96ae
e7af1f8
 
 
 
8de96ae
 
6c0e054
 
 
 
 
 
 
 
 
 
e7af1f8
 
 
 
 
 
 
 
504d95e
 
 
 
 
 
fe7dd5e
 
 
 
 
 
504d95e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
language:
- ja
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
- ja
datasets:
- common_voice
model-index:
- name: 'XLS-R-300-m'
  results:
  - task:
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: ja
    metrics:
       - name: Test WER
         type: wer
         value: 95.82
       - name: Test CER
         type: cer
         value: 23.64
  - task:
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: de
    metrics:
       - name: Test WER
         type: wer
         value: 1.0
       - name: Test CER
         type: cer
         value: 30.99
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset.

Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable.

On mozilla-foundation/common_voice_8_0 it achieved:
- cer: 23.64%

On speech-recognition-community-v2/dev_data it achieved:
- cer: 30.99%

It achieves the following results on the evaluation set:
- Loss: 0.5212
- Wer: 1.3068

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 48
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.0974        | 4.72  | 1000  | 4.0178          | 1.9535 |
| 2.1276        | 9.43  | 2000  | 0.9301          | 1.2128 |
| 1.7622        | 14.15 | 3000  | 0.7103          | 1.5527 |
| 1.6397        | 18.87 | 4000  | 0.6729          | 1.4269 |
| 1.5468        | 23.58 | 5000  | 0.6087          | 1.2497 |
| 1.4885        | 28.3  | 6000  | 0.5786          | 1.3222 |
| 1.451         | 33.02 | 7000  | 0.5726          | 1.3768 |
| 1.3912        | 37.74 | 8000  | 0.5518          | 1.2497 |
| 1.3617        | 42.45 | 9000  | 0.5352          | 1.2694 |
| 1.3113        | 47.17 | 10000 | 0.5228          | 1.2781 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs
```

2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```