--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - ja datasets: - common_voice model-index: - name: 'XLS-R-300-m' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 95.82 - name: Test CER type: cer value: 23.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 1.0 - name: Test CER type: cer value: 30.99 --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable. On mozilla-foundation/common_voice_8_0 it achieved: - cer: 23.64% On speech-recognition-community-v2/dev_data it achieved: - cer: 30.99% It achieves the following results on the evaluation set: - Loss: 0.5212 - Wer: 1.3068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 48 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.0974 | 4.72 | 1000 | 4.0178 | 1.9535 | | 2.1276 | 9.43 | 2000 | 0.9301 | 1.2128 | | 1.7622 | 14.15 | 3000 | 0.7103 | 1.5527 | | 1.6397 | 18.87 | 4000 | 0.6729 | 1.4269 | | 1.5468 | 23.58 | 5000 | 0.6087 | 1.2497 | | 1.4885 | 28.3 | 6000 | 0.5786 | 1.3222 | | 1.451 | 33.02 | 7000 | 0.5726 | 1.3768 | | 1.3912 | 37.74 | 8000 | 0.5518 | 1.2497 | | 1.3617 | 42.45 | 9000 | 0.5352 | 1.2694 | | 1.3113 | 47.17 | 10000 | 0.5228 | 1.2781 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs ``` 2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```