|
from typing import Dict, List, Any |
|
from modelscope import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.tokenizer =AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForCausalLM.from_pretrained(path, device_map='auto') |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
sys_prompt=data["prompt"] |
|
list=data["inputs"] |
|
prompt=f"<|im_start|>system\n{sys_prompt}.<|im_end|>\n" |
|
for item in list: |
|
if item["role"]=="assistant": |
|
content=item["content"] |
|
prompt+=f"<|im_start|>assistant\n{content}<|im_end|>\n" |
|
else: |
|
content=item["content"] |
|
prompt+=f"<|im_start|>user\n{content}<|im_end|>\n" |
|
prompt+="<|im_start|>assistant\n" |
|
|
|
|
|
|
|
encodeds = self.tokenizer.encode(prompt, return_tensors="pt") |
|
model_inputs = encodeds.to("cuda") |
|
self.model.to("cuda") |
|
generated_ids = self.model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = self.tokenizer.decode(generated_ids[0]) |
|
return decoded |
|
|
|
|
|
|