from typing import Dict, List, Any from modelscope import AutoModelForCausalLM, AutoTokenizer import torch class EndpointHandler: def __init__(self, path=""): self.tokenizer =AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained(path, device_map='auto') def __call__(self, data: Any) -> List[List[Dict[str, float]]]: sys_prompt=data["prompt"] list=data["inputs"] prompt=f"<|im_start|>system\n{sys_prompt}.<|im_end|>\n" for item in list: if item["role"]=="assistant": content=item["content"] prompt+=f"<|im_start|>assistant\n{content}<|im_end|>\n" else: content=item["content"] prompt+=f"<|im_start|>user\n{content}<|im_end|>\n" prompt+="<|im_start|>assistant\n" #for chat in prompts: #print(chat) encodeds = self.tokenizer.encode(prompt, return_tensors="pt") model_inputs = encodeds.to("cuda") self.model.to("cuda") generated_ids = self.model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = self.tokenizer.decode(generated_ids[0]) return decoded