AndyChiang
commited on
Commit
·
411792d
1
Parent(s):
1b589da
Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1039.17 +/- 297.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e26779068e3597b6c37603bdc6cb0a035eb5c2c29c79f839416a520f37821bd
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9b9b81cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9b9b81d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9b9b81e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9b9b81ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd9b9b81f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd9b9b81fc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd9b9b82050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9b9b820e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd9b9b82170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9b9b82200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9b9b82290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9b9b82320>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd9b9b85300>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1686125236640318028,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABO52D///us/JiDQv7p7+D6ILp49HTQjP7Pl1L16O9m+rDJnP5MYrL9e4Fc/pGYGP8Gecz8kgTzA2sjEvelvV0C5frm/gvr8v2UOZL/iGKA/Knctvx+FiD8q8r4/esjpv+ZdJT/wEQ3A8QYFPzKaCD9P7Wc/H/yNvpEEDz/uJrw/3oNwv7Kimj/aYTk+0+u2v0WG2T2FJYXAiPRrvvTTNj/Wk8a/oFAXv9TAzb1Q84C9eoQRv15v/r+vVR8/7Z7yPz3Esb7UFH7AVwCYP08wbbxIJ8a/HkjoPvEGBT8ymgg/QwomP3MMDj9pHK8+dj/zP/723L/SHR0/Bg8WPxp6WL+iWIQ/kPuIv65dNz/OcB7A1hWpv8QP4D6gzQW/SetrPynlY78rAzu/49g5P8gLmjwFSr0/z+P1vvroBT8wZF8/SCfGvx5I6D7xBgU/MpoIPwaWoz9bnUg/JQw5PoMkUr/yjYS/vOavv4hVyj+VIt89tCYGPz/2Ir64dSpAOQaDviGDqD/CUgPA55Tiv11VuT9pbAXALvvVv6iobL4tHrg/kifaPj9CnbwgsFS/IliXv+ZdJT8eSOg+8QYFPzKaCD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzOE01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKVPXPAAAAACYi+W/AAAAAIpe970AAAAATDgAQAAAAACXrJA9AAAAANC+AEAAAAAAvyrivQAAAACvPvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA05HAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM9PYz0AAAAAhJPovwAAAADihtM6AAAAALe0+z8AAAAARun1vQAAAADPDQBAAAAAAMr/hj0AAAAA1lPevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoszrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAOLwU+AAAAABFXAMAAAAAAqFO3vQAAAABmk+4/AAAAACe7Az4AAAAAad78PwAAAADDLZm9AAAAAJoIAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOCjK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvOnoPQAAAAAdS/6/AAAAAGgWCL4AAAAAC7X+PwAAAAAJYQO+AAAAANLj5D8AAAAAl8+tPQAAAADgD9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAJF5MURFuMAWyUTegDjAF0lEdAqjDBPEbYLHV9lChoBkdAfJsZwGW2PWgHTegDaAhHQKow/MxoIv91fZQoaAZHQJLzq2Xsw+NoB03oA2gIR0CqMokdeY2LdX2UKGgGR0CQvP3IdU83aAdN6ANoCEdAqjfLwrlNlHV9lChoBkdAiHamcFyJbmgHTegDaAhHQKo9YK+BYmt1fZQoaAZHQJJMzQw9JSRoB03oA2gIR0CqPbdqL0jDdX2UKGgGR0CSvS5sj3VTaAdN6ANoCEdAqj/tlTWGy3V9lChoBkdAkFSltGd7OWgHTegDaAhHQKpHr4B3iaR1fZQoaAZHQI70V7hNucdoB03oA2gIR0CqTMscQyyldX2UKGgGR0CQrOYrJ8v3aAdN6ANoCEdAqk0NjVhCt3V9lChoBkdAkciONPxhD2gHTegDaAhHQKpOoMuvllt1fZQoaAZHQI+NmmWMS9NoB03oA2gIR0CqVCWluWKNdX2UKGgGR0CSz0IuGsV+aAdN6ANoCEdAqllEehf0E3V9lChoBkdAkZY5PZZjhGgHTegDaAhHQKpZgV0Lc9J1fZQoaAZHQJFb7ikwevJoB03oA2gIR0CqWx1+RYA9dX2UKGgGR0CRSf+dK/VRaAdN6ANoCEdAqmMTMA3kxXV9lChoBkdAjCdxYigTRWgHTegDaAhHQKppUl4TsY51fZQoaAZHQIwKpof0VahoB03oA2gIR0CqaZGs/6frdX2UKGgGR0CRV1r4nF5waAdN6ANoCEdAqmspqIrOJXV9lChoBkdAkiqu5z5oG2gHTegDaAhHQKpwpN2TxG51fZQoaAZHQJLPJ8PWhAZoB03oA2gIR0CqddE+otL+dX2UKGgGR0CS+MmaH9FXaAdN6ANoCEdAqnYRLM9r43V9lChoBkdAkpJrgjyFwmgHTegDaAhHQKp3om+j/Mp1fZQoaAZHQJMMZRWLgoBoB03oA2gIR0Cqfj8/dIoWdX2UKGgGR0CSTE8hLXcyaAdN6ANoCEdAqoWbU9ZA6nV9lChoBkdAipX3iBGx2WgHTegDaAhHQKqF1uEVWS51fZQoaAZHQJDRSqebutxoB03oA2gIR0Cqh2zXSSeRdX2UKGgGR0COYnr8BMi9aAdN6ANoCEdAqoyxMpPRA3V9lChoBkdAiL2e/xlQM2gHTegDaAhHQKqR5KEnLJV1fZQoaAZHQIu53n4fwJBoB03oA2gIR0CqkiCkwevIdX2UKGgGR0CK+phOxjaxaAdN6ANoCEdAqpO0k2P1c3V9lChoBkdAjUEnKnvUjWgHTegDaAhHQKqZM9aEBbR1fZQoaAZHQIthP+ERJ3BoB03oA2gIR0CqoNG9YfW+dX2UKGgGR0CSens1sLv1aAdN6ANoCEdAqqE1BIFvAHV9lChoBkdAjYsnE/B3zWgHTegDaAhHQKqjo5hBqsV1fZQoaAZHQJAf7Heaa1FoB03oA2gIR0CqqOI42jwhdX2UKGgGR0CSQMu/DcdpaAdN6ANoCEdAqq4JlJ6IFnV9lChoBkdAh5oQhW5pamgHTegDaAhHQKquQyFfzBh1fZQoaAZHQJCFZm+TNdJoB03oA2gIR0Cqr9R+az/qdX2UKGgGR0CSp9W/JvHcaAdN6ANoCEdAqrUwCSzPbHV9lChoBkdAj6E8+RoysWgHTegDaAhHQKq7cf+S8rZ1fZQoaAZHQJApxet0V8FoB03oA2gIR0Cqu8+ocaOxdX2UKGgGR0CBiU3eenQ6aAdN6ANoCEdAqr5GCiAUcnV9lChoBkdAjfIIXj2i+WgHTegDaAhHQKrFEKzAvct1fZQoaAZHQI7rczuWrwRoB03oA2gIR0CqyjKYzBRAdX2UKGgGR0CMpOkWykbhaAdN6ANoCEdAqsp0x7AtWnV9lChoBkdAjLRhSDRMOGgHTegDaAhHQKrMFW6K+BZ1fZQoaAZHQIxtVvXK8thoB03oA2gIR0Cq0VUNKAavdX2UKGgGR0CSEGmhM8HOaAdN6ANoCEdAqtZqYVqN63V9lChoBkdAiihcX3xnWmgHTegDaAhHQKrWuxdIGyJ1fZQoaAZHQI50Npyp71JoB03oA2gIR0Cq2Qm+sYEXdX2UKGgGR0CSDgU2kzoEaAdN6ANoCEdAquEmSfUWmHV9lChoBkdAkVSZnL7oCGgHTegDaAhHQKrmjXUYsNF1fZQoaAZHQJFzXlijL0VoB03oA2gIR0Cq5tElu3tsdX2UKGgGR0CLz73zMA3laAdN6ANoCEdAquhngaWHDnV9lChoBkdAi1s4FaB7NWgHTegDaAhHQKrtvyU9pyp1fZQoaAZHQJGxbi83+/BoB03oA2gIR0Cq8tLf+CK8dX2UKGgGR0CSpIHE/B3zaAdN6ANoCEdAqvMS3qiXY3V9lChoBkdAkSO+ruIAO2gHTegDaAhHQKr0oc/dIoV1fZQoaAZHQI7gQNZvDP5oB03oA2gIR0Cq/BSvcJt0dX2UKGgGR0COHwliz9jxaAdN6ANoCEdAqwKjz06HTXV9lChoBkdAj5QfVy3kP2gHTegDaAhHQKsC31yNn5B1fZQoaAZHQIu1D/IbOu9oB03oA2gIR0CrBGNxEORUdX2UKGgGR0CQUmqn3ta7aAdN6ANoCEdAqwnBD7ZWaXV9lChoBkdAj+g8IiTt9mgHTegDaAhHQKsO1aZhKDl1fZQoaAZHQIx9C4Ds+mpoB03oA2gIR0CrDxH2qT8pdX2UKGgGR0CQRgMNc4YKaAdN6ANoCEdAqxCo9eQdS3V9lChoBkdAidTXH7xd6mgHTegDaAhHQKsW3wMH8j11fZQoaAZHQI1nzOX3QD5oB03oA2gIR0CrHr10Lc9GdX2UKGgGR0CMv4ZMtbs4aAdN6ANoCEdAqx8WLk0aZXV9lChoBkdAhsW3WOIZZWgHTegDaAhHQKsgnAaef7J1fZQoaAZHQI9vhsuWa+hoB03oA2gIR0CrJc8OTaCddX2UKGgGR0CQjHSE12q2aAdN6ANoCEdAqyrp3os7MnV9lChoBkdAkGMW07bL2mgHTegDaAhHQKsrKXu3MIN1fZQoaAZHQJHjyajN6gNoB03oA2gIR0CrLK5nUUfxdX2UKGgGR0CTP4sLfDUFaAdN6ANoCEdAqzHUjTrmhnV9lChoBkdAk0PQu27Wd2gHTegDaAhHQKs4mDrZ8KJ1fZQoaAZHQJE3qaMJhORoB03oA2gIR0CrOPa19fCzdX2UKGgGR0CS8rz3yqdZaAdN6ANoCEdAqztWWBz3iHV9lChoBkdAk7IzMFEApGgHTegDaAhHQKtBaNCqp991fZQoaAZHQJJFzLLZBcBoB03oA2gIR0CrRo+Zof0VdX2UKGgGR0CQJ7VGTcIraAdN6ANoCEdAq0bL/4qPO3V9lChoBkdAi5Nz7/GVA2gHTegDaAhHQKtIWqur6tV1fZQoaAZHQHfjIdMj/uNoB03oA2gIR0CrTbefywwCdX2UKGgGR0CRjC16mfoSaAdN6ANoCEdAq1NpaaCtinV9lChoBkdAkRtEFnqVyGgHTegDaAhHQKtTw9EkSmJ1fZQoaAZHQJLJLaFmFrVoB03oA2gIR0CrViCm2sq8dX2UKGgGR0CSDXjoZAIIaAdN6ANoCEdAq13274BV/HV9lChoBkdAkekCILw4KmgHTegDaAhHQKtjGQI2OyV1fZQoaAZHQJJu0Dq4YrJoB03oA2gIR0CrY1W+XZ5BdX2UKGgGR0CRXnCwr1/UaAdN6ANoCEdAq2TsPpY9xXV9lChoBkdAkQs9pZfUnWgHTegDaAhHQKtqNs67ulZ1fZQoaAZHQJEE5/ustCloB03oA2gIR0Crb0j0UXYUdX2UKGgGR0CS1Ab4agmJaAdN6ANoCEdAq2+EFhXr+3V9lChoBkdAk+W7Hhjvu2gHTegDaAhHQKtxOMH8jzJ1fZQoaAZHQJOfoBFNL15oB03oA2gIR0CreP6vzOHGdX2UKGgGR0CTwsFBppN9aAdN6ANoCEdAq38Dbah6B3V9lChoBkdAk9sQqAjIJmgHTegDaAhHQKt/RcgyM1l1fZQoaAZHQJPW6sbNr0toB03oA2gIR0CrgOTIeYD1dX2UKGgGR0CRoFvlU6xPaAdN6ANoCEdAq4YacLBsRHVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:322bd42b2e4876e538d3678f81544ff445367ec1e47e98b9b609469259a9070d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00f22f21bebf50f8a6ec395c230415141146224d66a9c2f1dcc8846111bb2f33
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd9b9b81cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd9b9b81d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9b9b81e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd9b9b81ea0>", "_build": "<function ActorCriticPolicy._build at 0x7fd9b9b81f30>", "forward": "<function ActorCriticPolicy.forward at 0x7fd9b9b81fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd9b9b82050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd9b9b820e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd9b9b82170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd9b9b82200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd9b9b82290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd9b9b82320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd9b9b85300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686125236640318028, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABO52D///us/JiDQv7p7+D6ILp49HTQjP7Pl1L16O9m+rDJnP5MYrL9e4Fc/pGYGP8Gecz8kgTzA2sjEvelvV0C5frm/gvr8v2UOZL/iGKA/Knctvx+FiD8q8r4/esjpv+ZdJT/wEQ3A8QYFPzKaCD9P7Wc/H/yNvpEEDz/uJrw/3oNwv7Kimj/aYTk+0+u2v0WG2T2FJYXAiPRrvvTTNj/Wk8a/oFAXv9TAzb1Q84C9eoQRv15v/r+vVR8/7Z7yPz3Esb7UFH7AVwCYP08wbbxIJ8a/HkjoPvEGBT8ymgg/QwomP3MMDj9pHK8+dj/zP/723L/SHR0/Bg8WPxp6WL+iWIQ/kPuIv65dNz/OcB7A1hWpv8QP4D6gzQW/SetrPynlY78rAzu/49g5P8gLmjwFSr0/z+P1vvroBT8wZF8/SCfGvx5I6D7xBgU/MpoIPwaWoz9bnUg/JQw5PoMkUr/yjYS/vOavv4hVyj+VIt89tCYGPz/2Ir64dSpAOQaDviGDqD/CUgPA55Tiv11VuT9pbAXALvvVv6iobL4tHrg/kifaPj9CnbwgsFS/IliXv+ZdJT8eSOg+8QYFPzKaCD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzOE01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKVPXPAAAAACYi+W/AAAAAIpe970AAAAATDgAQAAAAACXrJA9AAAAANC+AEAAAAAAvyrivQAAAACvPvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA05HAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM9PYz0AAAAAhJPovwAAAADihtM6AAAAALe0+z8AAAAARun1vQAAAADPDQBAAAAAAMr/hj0AAAAA1lPevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoszrQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAOLwU+AAAAABFXAMAAAAAAqFO3vQAAAABmk+4/AAAAACe7Az4AAAAAad78PwAAAADDLZm9AAAAAJoIAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOCjK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvOnoPQAAAAAdS/6/AAAAAGgWCL4AAAAAC7X+PwAAAAAJYQO+AAAAANLj5D8AAAAAl8+tPQAAAADgD9q/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAJF5MURFuMAWyUTegDjAF0lEdAqjDBPEbYLHV9lChoBkdAfJsZwGW2PWgHTegDaAhHQKow/MxoIv91fZQoaAZHQJLzq2Xsw+NoB03oA2gIR0CqMokdeY2LdX2UKGgGR0CQvP3IdU83aAdN6ANoCEdAqjfLwrlNlHV9lChoBkdAiHamcFyJbmgHTegDaAhHQKo9YK+BYmt1fZQoaAZHQJJMzQw9JSRoB03oA2gIR0CqPbdqL0jDdX2UKGgGR0CSvS5sj3VTaAdN6ANoCEdAqj/tlTWGy3V9lChoBkdAkFSltGd7OWgHTegDaAhHQKpHr4B3iaR1fZQoaAZHQI70V7hNucdoB03oA2gIR0CqTMscQyyldX2UKGgGR0CQrOYrJ8v3aAdN6ANoCEdAqk0NjVhCt3V9lChoBkdAkciONPxhD2gHTegDaAhHQKpOoMuvllt1fZQoaAZHQI+NmmWMS9NoB03oA2gIR0CqVCWluWKNdX2UKGgGR0CSz0IuGsV+aAdN6ANoCEdAqllEehf0E3V9lChoBkdAkZY5PZZjhGgHTegDaAhHQKpZgV0Lc9J1fZQoaAZHQJFb7ikwevJoB03oA2gIR0CqWx1+RYA9dX2UKGgGR0CRSf+dK/VRaAdN6ANoCEdAqmMTMA3kxXV9lChoBkdAjCdxYigTRWgHTegDaAhHQKppUl4TsY51fZQoaAZHQIwKpof0VahoB03oA2gIR0CqaZGs/6frdX2UKGgGR0CRV1r4nF5waAdN6ANoCEdAqmspqIrOJXV9lChoBkdAkiqu5z5oG2gHTegDaAhHQKpwpN2TxG51fZQoaAZHQJLPJ8PWhAZoB03oA2gIR0CqddE+otL+dX2UKGgGR0CS+MmaH9FXaAdN6ANoCEdAqnYRLM9r43V9lChoBkdAkpJrgjyFwmgHTegDaAhHQKp3om+j/Mp1fZQoaAZHQJMMZRWLgoBoB03oA2gIR0Cqfj8/dIoWdX2UKGgGR0CSTE8hLXcyaAdN6ANoCEdAqoWbU9ZA6nV9lChoBkdAipX3iBGx2WgHTegDaAhHQKqF1uEVWS51fZQoaAZHQJDRSqebutxoB03oA2gIR0Cqh2zXSSeRdX2UKGgGR0COYnr8BMi9aAdN6ANoCEdAqoyxMpPRA3V9lChoBkdAiL2e/xlQM2gHTegDaAhHQKqR5KEnLJV1fZQoaAZHQIu53n4fwJBoB03oA2gIR0CqkiCkwevIdX2UKGgGR0CK+phOxjaxaAdN6ANoCEdAqpO0k2P1c3V9lChoBkdAjUEnKnvUjWgHTegDaAhHQKqZM9aEBbR1fZQoaAZHQIthP+ERJ3BoB03oA2gIR0CqoNG9YfW+dX2UKGgGR0CSens1sLv1aAdN6ANoCEdAqqE1BIFvAHV9lChoBkdAjYsnE/B3zWgHTegDaAhHQKqjo5hBqsV1fZQoaAZHQJAf7Heaa1FoB03oA2gIR0CqqOI42jwhdX2UKGgGR0CSQMu/DcdpaAdN6ANoCEdAqq4JlJ6IFnV9lChoBkdAh5oQhW5pamgHTegDaAhHQKquQyFfzBh1fZQoaAZHQJCFZm+TNdJoB03oA2gIR0Cqr9R+az/qdX2UKGgGR0CSp9W/JvHcaAdN6ANoCEdAqrUwCSzPbHV9lChoBkdAj6E8+RoysWgHTegDaAhHQKq7cf+S8rZ1fZQoaAZHQJApxet0V8FoB03oA2gIR0Cqu8+ocaOxdX2UKGgGR0CBiU3eenQ6aAdN6ANoCEdAqr5GCiAUcnV9lChoBkdAjfIIXj2i+WgHTegDaAhHQKrFEKzAvct1fZQoaAZHQI7rczuWrwRoB03oA2gIR0CqyjKYzBRAdX2UKGgGR0CMpOkWykbhaAdN6ANoCEdAqsp0x7AtWnV9lChoBkdAjLRhSDRMOGgHTegDaAhHQKrMFW6K+BZ1fZQoaAZHQIxtVvXK8thoB03oA2gIR0Cq0VUNKAavdX2UKGgGR0CSEGmhM8HOaAdN6ANoCEdAqtZqYVqN63V9lChoBkdAiihcX3xnWmgHTegDaAhHQKrWuxdIGyJ1fZQoaAZHQI50Npyp71JoB03oA2gIR0Cq2Qm+sYEXdX2UKGgGR0CSDgU2kzoEaAdN6ANoCEdAquEmSfUWmHV9lChoBkdAkVSZnL7oCGgHTegDaAhHQKrmjXUYsNF1fZQoaAZHQJFzXlijL0VoB03oA2gIR0Cq5tElu3tsdX2UKGgGR0CLz73zMA3laAdN6ANoCEdAquhngaWHDnV9lChoBkdAi1s4FaB7NWgHTegDaAhHQKrtvyU9pyp1fZQoaAZHQJGxbi83+/BoB03oA2gIR0Cq8tLf+CK8dX2UKGgGR0CSpIHE/B3zaAdN6ANoCEdAqvMS3qiXY3V9lChoBkdAkSO+ruIAO2gHTegDaAhHQKr0oc/dIoV1fZQoaAZHQI7gQNZvDP5oB03oA2gIR0Cq/BSvcJt0dX2UKGgGR0COHwliz9jxaAdN6ANoCEdAqwKjz06HTXV9lChoBkdAj5QfVy3kP2gHTegDaAhHQKsC31yNn5B1fZQoaAZHQIu1D/IbOu9oB03oA2gIR0CrBGNxEORUdX2UKGgGR0CQUmqn3ta7aAdN6ANoCEdAqwnBD7ZWaXV9lChoBkdAj+g8IiTt9mgHTegDaAhHQKsO1aZhKDl1fZQoaAZHQIx9C4Ds+mpoB03oA2gIR0CrDxH2qT8pdX2UKGgGR0CQRgMNc4YKaAdN6ANoCEdAqxCo9eQdS3V9lChoBkdAidTXH7xd6mgHTegDaAhHQKsW3wMH8j11fZQoaAZHQI1nzOX3QD5oB03oA2gIR0CrHr10Lc9GdX2UKGgGR0CMv4ZMtbs4aAdN6ANoCEdAqx8WLk0aZXV9lChoBkdAhsW3WOIZZWgHTegDaAhHQKsgnAaef7J1fZQoaAZHQI9vhsuWa+hoB03oA2gIR0CrJc8OTaCddX2UKGgGR0CQjHSE12q2aAdN6ANoCEdAqyrp3os7MnV9lChoBkdAkGMW07bL2mgHTegDaAhHQKsrKXu3MIN1fZQoaAZHQJHjyajN6gNoB03oA2gIR0CrLK5nUUfxdX2UKGgGR0CTP4sLfDUFaAdN6ANoCEdAqzHUjTrmhnV9lChoBkdAk0PQu27Wd2gHTegDaAhHQKs4mDrZ8KJ1fZQoaAZHQJE3qaMJhORoB03oA2gIR0CrOPa19fCzdX2UKGgGR0CS8rz3yqdZaAdN6ANoCEdAqztWWBz3iHV9lChoBkdAk7IzMFEApGgHTegDaAhHQKtBaNCqp991fZQoaAZHQJJFzLLZBcBoB03oA2gIR0CrRo+Zof0VdX2UKGgGR0CQJ7VGTcIraAdN6ANoCEdAq0bL/4qPO3V9lChoBkdAi5Nz7/GVA2gHTegDaAhHQKtIWqur6tV1fZQoaAZHQHfjIdMj/uNoB03oA2gIR0CrTbefywwCdX2UKGgGR0CRjC16mfoSaAdN6ANoCEdAq1NpaaCtinV9lChoBkdAkRtEFnqVyGgHTegDaAhHQKtTw9EkSmJ1fZQoaAZHQJLJLaFmFrVoB03oA2gIR0CrViCm2sq8dX2UKGgGR0CSDXjoZAIIaAdN6ANoCEdAq13274BV/HV9lChoBkdAkekCILw4KmgHTegDaAhHQKtjGQI2OyV1fZQoaAZHQJJu0Dq4YrJoB03oA2gIR0CrY1W+XZ5BdX2UKGgGR0CRXnCwr1/UaAdN6ANoCEdAq2TsPpY9xXV9lChoBkdAkQs9pZfUnWgHTegDaAhHQKtqNs67ulZ1fZQoaAZHQJEE5/ustCloB03oA2gIR0Crb0j0UXYUdX2UKGgGR0CS1Ab4agmJaAdN6ANoCEdAq2+EFhXr+3V9lChoBkdAk+W7Hhjvu2gHTegDaAhHQKtxOMH8jzJ1fZQoaAZHQJOfoBFNL15oB03oA2gIR0CreP6vzOHGdX2UKGgGR0CTwsFBppN9aAdN6ANoCEdAq38Dbah6B3V9lChoBkdAk9sQqAjIJmgHTegDaAhHQKt/RcgyM1l1fZQoaAZHQJPW6sbNr0toB03oA2gIR0CrgOTIeYD1dX2UKGgGR0CRoFvlU6xPaAdN6ANoCEdAq4YacLBsRHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (903 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1039.1704451820667, "std_reward": 297.6967643291233, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-07T09:16:57.567232"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3dfcf00580e372b1fe59d90d1fdc93f3a97412aef9ee2f41c502b266b516e7f
|
3 |
+
size 2176
|