AndyJamesTurner commited on
Commit
8b59fc6
·
verified ·
1 Parent(s): 95af55b

Python version 3.10

Browse files
Files changed (3) hide show
  1. README.md +69 -69
  2. main.py +1 -1
  3. model.pkl +2 -2
README.md CHANGED
@@ -14,7 +14,7 @@ model_file: model.pkl
14
 
15
  Suicide Detection text classification model.
16
 
17
- PYTHON 3.9 ONLY
18
 
19
 
20
  ## Training Procedure
@@ -32,73 +32,73 @@ See main.py for further details.
32
  <details>
33
  <summary> Click to expand </summary>
34
 
35
- | Hyperparameter | Value |
36
- |-------------------------------------|-------------------------------------------|
37
- | memory | |
38
- | steps | [('tfidf', TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fc4367e5280>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...))] |
39
- | verbose | True |
40
- | tfidf | TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fc4367e5280>) |
41
- | classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...) |
42
- | tfidf__analyzer | word |
43
- | tfidf__binary | False |
44
- | tfidf__decode_error | strict |
45
- | tfidf__dtype | <class 'numpy.float64'> |
46
- | tfidf__encoding | utf-8 |
47
- | tfidf__input | content |
48
- | tfidf__lowercase | True |
49
- | tfidf__max_df | 1.0 |
50
- | tfidf__max_features | |
51
- | tfidf__min_df | 100 |
52
- | tfidf__ngram_range | (1, 3) |
53
- | tfidf__norm | l2 |
54
- | tfidf__preprocessor | <function preprocessor at 0x7fc4367e5280> |
55
- | tfidf__smooth_idf | True |
56
- | tfidf__stop_words | |
57
- | tfidf__strip_accents | |
58
- | tfidf__sublinear_tf | False |
59
- | tfidf__token_pattern | (?u)\b\w\w+\b |
60
- | tfidf__tokenizer | |
61
- | tfidf__use_idf | True |
62
- | tfidf__vocabulary | |
63
- | classifier__objective | binary:logistic |
64
- | classifier__base_score | |
65
- | classifier__booster | |
66
- | classifier__callbacks | |
67
- | classifier__colsample_bylevel | |
68
- | classifier__colsample_bynode | |
69
- | classifier__colsample_bytree | |
70
- | classifier__device | |
71
- | classifier__early_stopping_rounds | |
72
- | classifier__enable_categorical | False |
73
- | classifier__eval_metric | |
74
- | classifier__feature_types | |
75
- | classifier__gamma | |
76
- | classifier__grow_policy | |
77
- | classifier__importance_type | |
78
- | classifier__interaction_constraints | |
79
- | classifier__learning_rate | |
80
- | classifier__max_bin | |
81
- | classifier__max_cat_threshold | |
82
- | classifier__max_cat_to_onehot | |
83
- | classifier__max_delta_step | |
84
- | classifier__max_depth | |
85
- | classifier__max_leaves | |
86
- | classifier__min_child_weight | |
87
- | classifier__missing | nan |
88
- | classifier__monotone_constraints | |
89
- | classifier__multi_strategy | |
90
- | classifier__n_estimators | |
91
- | classifier__n_jobs | |
92
- | classifier__num_parallel_tree | |
93
- | classifier__random_state | |
94
- | classifier__reg_alpha | |
95
- | classifier__reg_lambda | |
96
- | classifier__sampling_method | |
97
- | classifier__scale_pos_weight | |
98
- | classifier__subsample | |
99
- | classifier__tree_method | |
100
- | classifier__validate_parameters | |
101
- | classifier__verbosity | |
102
 
103
  </details>
104
 
@@ -180,7 +180,7 @@ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
180
  #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
181
  }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
182
  }
183
- </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fc4367e5280&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fc4367e5280&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fc4367e5280&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">XGBClassifier</label><div class="sk-toggleable__content fitted"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>
184
 
185
  ## Evaluation Results
186
 
 
14
 
15
  Suicide Detection text classification model.
16
 
17
+ PYTHON 3.10 ONLY
18
 
19
 
20
  ## Training Procedure
 
32
  <details>
33
  <summary> Click to expand </summary>
34
 
35
+ | Hyperparameter | Value |
36
+ |-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
37
+ | memory | |
38
+ | steps | [('tfidf', TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7f8d443a30a0>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...))] |
39
+ | verbose | True |
40
+ | tfidf | TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7f8d443a30a0>) |
41
+ | classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...) |
42
+ | tfidf__analyzer | word |
43
+ | tfidf__binary | False |
44
+ | tfidf__decode_error | strict |
45
+ | tfidf__dtype | <class 'numpy.float64'> |
46
+ | tfidf__encoding | utf-8 |
47
+ | tfidf__input | content |
48
+ | tfidf__lowercase | True |
49
+ | tfidf__max_df | 1.0 |
50
+ | tfidf__max_features | |
51
+ | tfidf__min_df | 100 |
52
+ | tfidf__ngram_range | (1, 3) |
53
+ | tfidf__norm | l2 |
54
+ | tfidf__preprocessor | <function preprocessor at 0x7f8d443a30a0> |
55
+ | tfidf__smooth_idf | True |
56
+ | tfidf__stop_words | |
57
+ | tfidf__strip_accents | |
58
+ | tfidf__sublinear_tf | False |
59
+ | tfidf__token_pattern | (?u)\b\w\w+\b |
60
+ | tfidf__tokenizer | |
61
+ | tfidf__use_idf | True |
62
+ | tfidf__vocabulary | |
63
+ | classifier__objective | binary:logistic |
64
+ | classifier__base_score | |
65
+ | classifier__booster | |
66
+ | classifier__callbacks | |
67
+ | classifier__colsample_bylevel | |
68
+ | classifier__colsample_bynode | |
69
+ | classifier__colsample_bytree | |
70
+ | classifier__device | |
71
+ | classifier__early_stopping_rounds | |
72
+ | classifier__enable_categorical | False |
73
+ | classifier__eval_metric | |
74
+ | classifier__feature_types | |
75
+ | classifier__gamma | |
76
+ | classifier__grow_policy | |
77
+ | classifier__importance_type | |
78
+ | classifier__interaction_constraints | |
79
+ | classifier__learning_rate | |
80
+ | classifier__max_bin | |
81
+ | classifier__max_cat_threshold | |
82
+ | classifier__max_cat_to_onehot | |
83
+ | classifier__max_delta_step | |
84
+ | classifier__max_depth | |
85
+ | classifier__max_leaves | |
86
+ | classifier__min_child_weight | |
87
+ | classifier__missing | nan |
88
+ | classifier__monotone_constraints | |
89
+ | classifier__multi_strategy | |
90
+ | classifier__n_estimators | |
91
+ | classifier__n_jobs | |
92
+ | classifier__num_parallel_tree | |
93
+ | classifier__random_state | |
94
+ | classifier__reg_alpha | |
95
+ | classifier__reg_lambda | |
96
+ | classifier__sampling_method | |
97
+ | classifier__scale_pos_weight | |
98
+ | classifier__subsample | |
99
+ | classifier__tree_method | |
100
+ | classifier__validate_parameters | |
101
+ | classifier__verbosity | |
102
 
103
  </details>
104
 
 
180
  #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
181
  }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
182
  }
183
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7f8d443a30a0&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7f8d443a30a0&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7f8d443a30a0&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">XGBClassifier</label><div class="sk-toggleable__content fitted"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>
184
 
185
  ## Evaluation Results
186
 
main.py CHANGED
@@ -86,7 +86,7 @@ model_card.metadata.license = "mit"
86
  model_description = """
87
  Suicide Detection text classification model.
88
 
89
- PYTHON 3.9 ONLY
90
  """
91
 
92
  model_card.add(**{"Model description": model_description})
 
86
  model_description = """
87
  Suicide Detection text classification model.
88
 
89
+ PYTHON 3.10 ONLY
90
  """
91
 
92
  model_card.add(**{"Model description": model_description})
model.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a017267c3abe9acc8cdc759cda29ee0c753b496c0e53ed4527c77235290f442
3
- size 222084873
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a748119b514aaefb9c9cebd919616e3266ef2e2269a5dc408d2f0d5d4b3728f
3
+ size 222084905