Commit
·
d065d88
1
Parent(s):
5b33552
Upload finetune.ipynb
Browse files- finetune.ipynb +2565 -0
finetune.ipynb
ADDED
@@ -0,0 +1,2565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "E1zyZkJbdFuH"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# How to Finetune Mistral AI 7B LLM with Hugging Face AutoTrain"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 1,
|
15 |
+
"metadata": {
|
16 |
+
"colab": {
|
17 |
+
"base_uri": "https://localhost:8080/"
|
18 |
+
},
|
19 |
+
"id": "j4yghPpHcxkG",
|
20 |
+
"outputId": "9c13119a-9c4b-4b24-ab1e-ae0695c9c863"
|
21 |
+
},
|
22 |
+
"outputs": [
|
23 |
+
{
|
24 |
+
"name": "stdout",
|
25 |
+
"output_type": "stream",
|
26 |
+
"text": [
|
27 |
+
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
|
28 |
+
"\u001b[0m\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
|
29 |
+
"\u001b[0m"
|
30 |
+
]
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"!pip install -U autotrain-advanced -q\n",
|
35 |
+
"!pip install datasets transformers -q"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 2,
|
41 |
+
"metadata": {
|
42 |
+
"colab": {
|
43 |
+
"base_uri": "https://localhost:8080/",
|
44 |
+
"height": 177,
|
45 |
+
"referenced_widgets": [
|
46 |
+
"349b946a72ac46298a95db5e4229a381",
|
47 |
+
"a40f275727b54c9aa04b1fc4fff8a4fc",
|
48 |
+
"22fad0230fe24a43bdace165ee70558d",
|
49 |
+
"8efdcd2e9fcc4b8f83a6ed1c39a81b42",
|
50 |
+
"e005090ce2074654b3bf549d7dfa18bd",
|
51 |
+
"f3c42fd1fd2f4bc29bf462890b882bb2",
|
52 |
+
"87b2e58b20094d78a0f46b5c08c563b3",
|
53 |
+
"38c99e6e3f454d5ba33d4464fefa82c4",
|
54 |
+
"63057827544242d9a035c0873bc1d85f",
|
55 |
+
"fad3fdc1097244a391cc7d85f11def68",
|
56 |
+
"db26bb3f65bb42a7a5e0b46123f165d6",
|
57 |
+
"879964fd922048e7a5957b3b2d2e11ad",
|
58 |
+
"af67777d31c14f5680ca1d851ef6be2a",
|
59 |
+
"dedd6fd4d918415ebc0ee78fb053ed6a",
|
60 |
+
"03469a3882de440cb6a8c36b5a4568d6",
|
61 |
+
"80647814a92d48718aaef5be6d874ced",
|
62 |
+
"1eb94330421f4fa2bca65b82bedcbfef",
|
63 |
+
"cbea2a9da24f48a59214cee13cc6b153",
|
64 |
+
"d1c670a45b0f4befaa0e849ec8646a47",
|
65 |
+
"7dae960d1bb54f75914569fbdd45ef6c",
|
66 |
+
"d7708c22d8a34082b80a14302983159e",
|
67 |
+
"c59da8b062a84afebfad5da6ef5a496a",
|
68 |
+
"71089a885db64054b54e269b4e96c242",
|
69 |
+
"af2258a6b3884cf292819159088442a5",
|
70 |
+
"b7f44b7f635f4cf887c5794533737428",
|
71 |
+
"d397ee73099c45d69c53be2d6048bf9c",
|
72 |
+
"96f1acd888b145149358cbeb771c634c",
|
73 |
+
"e4dc8b48a318447cb8ebd7b20618bcb3",
|
74 |
+
"485fb67e13f04f8e92dcebf317d95488",
|
75 |
+
"a29d6df7874144f888fa88c52daf6ac9",
|
76 |
+
"77a1067871e4496893946bf485cec8af",
|
77 |
+
"c241b2d6899a4a62861d7e839091c2f7",
|
78 |
+
"249766ef96ac467caf7d529c29af60db",
|
79 |
+
"54d97d65052f415c9986ecf8e447b8a3",
|
80 |
+
"067ebf5a471e4546bc631f290411a664",
|
81 |
+
"208ccbf20b4d4591afa41b7a28588e7e",
|
82 |
+
"3e15b8ca59094602b881a91eba591596",
|
83 |
+
"196e0ec8434747279843840fc4c826f0",
|
84 |
+
"6385ed14895f414c8eda670301ebead9",
|
85 |
+
"f902ed42a30e476a8d508c50fa9fc602",
|
86 |
+
"269e619c72dd426ead5677f187c8a42b",
|
87 |
+
"e43fe266c77e495b9b422ccaeda2c03a",
|
88 |
+
"b5c1a43a427145eca43627135e967868",
|
89 |
+
"42737a9271d8445bb259b42b1d2bf77c",
|
90 |
+
"68e7d3bbc6f8420193c45055c39c333d",
|
91 |
+
"6bfe3ed1a59b4ecfaa566a88e58f5b9f",
|
92 |
+
"be3d90e349d14079874c730f0f273cc1",
|
93 |
+
"80639985213d47dcb3a3681dc98dfeed",
|
94 |
+
"29f34d4ed85f45b1bbec6d7f8d1145e6",
|
95 |
+
"37a803b8fec8453e891a2427c328a387",
|
96 |
+
"c052f02649bd40d8a60ea201c41be2f6",
|
97 |
+
"a9641d5441d24f4c901c86e6d5650c4e",
|
98 |
+
"1c295b1b2f374acfb7f2b7ddcfe3b960",
|
99 |
+
"0246b46f672247dab14d0ddd0c0a25ec",
|
100 |
+
"1d07551dc3b240da92032bcdc69fd796"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
"id": "AHZ9X2ALdAbd",
|
104 |
+
"outputId": "bbc01be1-17d3-4c8f-8b11-3b2a4c1d4d3f"
|
105 |
+
},
|
106 |
+
"outputs": [
|
107 |
+
{
|
108 |
+
"data": {
|
109 |
+
"application/vnd.jupyter.widget-view+json": {
|
110 |
+
"model_id": "b138a11c06c447789ddbe117128c2ca3",
|
111 |
+
"version_major": 2,
|
112 |
+
"version_minor": 0
|
113 |
+
},
|
114 |
+
"text/plain": [
|
115 |
+
"Downloading readme: 0%| | 0.00/7.47k [00:00<?, ?B/s]"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"metadata": {},
|
119 |
+
"output_type": "display_data"
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"data": {
|
123 |
+
"application/vnd.jupyter.widget-view+json": {
|
124 |
+
"model_id": "d5ecfb10bcb643b485e67ab2650ea831",
|
125 |
+
"version_major": 2,
|
126 |
+
"version_minor": 0
|
127 |
+
},
|
128 |
+
"text/plain": [
|
129 |
+
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
"metadata": {},
|
133 |
+
"output_type": "display_data"
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"data": {
|
137 |
+
"application/vnd.jupyter.widget-view+json": {
|
138 |
+
"model_id": "e7f4c5df5478472297ab427f21ef1df9",
|
139 |
+
"version_major": 2,
|
140 |
+
"version_minor": 0
|
141 |
+
},
|
142 |
+
"text/plain": [
|
143 |
+
"Downloading data: 0%| | 0.00/24.2M [00:00<?, ?B/s]"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
"metadata": {},
|
147 |
+
"output_type": "display_data"
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"data": {
|
151 |
+
"application/vnd.jupyter.widget-view+json": {
|
152 |
+
"model_id": "95fa808517c04f55b99aaf138640302c",
|
153 |
+
"version_major": 2,
|
154 |
+
"version_minor": 0
|
155 |
+
},
|
156 |
+
"text/plain": [
|
157 |
+
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
"metadata": {},
|
161 |
+
"output_type": "display_data"
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"data": {
|
165 |
+
"application/vnd.jupyter.widget-view+json": {
|
166 |
+
"model_id": "91bdba1d5ce7493ab466c0c6f6b948e5",
|
167 |
+
"version_major": 2,
|
168 |
+
"version_minor": 0
|
169 |
+
},
|
170 |
+
"text/plain": [
|
171 |
+
"Generating train split: 0 examples [00:00, ? examples/s]"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
"metadata": {},
|
175 |
+
"output_type": "display_data"
|
176 |
+
}
|
177 |
+
],
|
178 |
+
"source": [
|
179 |
+
"from datasets import load_dataset\n",
|
180 |
+
"import pandas as pd\n",
|
181 |
+
"\n",
|
182 |
+
"# Load the dataset\n",
|
183 |
+
"train= load_dataset(\"tatsu-lab/alpaca\",split='train[:10%]')\n",
|
184 |
+
"train = pd.DataFrame(train)"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "markdown",
|
189 |
+
"metadata": {
|
190 |
+
"id": "13NK0qgZeQkN"
|
191 |
+
},
|
192 |
+
"source": []
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "markdown",
|
196 |
+
"metadata": {
|
197 |
+
"id": "-Kb_0gjcddbT"
|
198 |
+
},
|
199 |
+
"source": [
|
200 |
+
"The dataset already contains the text columns with a format we need to fine-tune our LLM model. That’s why we don’t need to perform anything. However, I would provide a code if you have another dataset that needs the formatting."
|
201 |
+
]
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"cell_type": "code",
|
205 |
+
"execution_count": 3,
|
206 |
+
"metadata": {
|
207 |
+
"id": "rt09VgS2dehn"
|
208 |
+
},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"def text_formatting(data):\n",
|
212 |
+
"\n",
|
213 |
+
" # If the input column is not empty\n",
|
214 |
+
" if data['input']:\n",
|
215 |
+
"\n",
|
216 |
+
" text = f\"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\n{data[\"instruction\"]} \\n\\n### Input:\\n{data[\"input\"]}\\n\\n### Response:\\n{data[\"output\"]}\"\"\"\n",
|
217 |
+
"\n",
|
218 |
+
" else:\n",
|
219 |
+
"\n",
|
220 |
+
" text = f\"\"\"Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n\\n### Instruction:\\n{data[\"instruction\"]}\\n\\n### Response:\\n{data[\"output\"]}\"\"\"\n",
|
221 |
+
"\n",
|
222 |
+
" return text\n",
|
223 |
+
"\n",
|
224 |
+
"train['text'] = train.apply(text_formatting, axis =1)"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "markdown",
|
229 |
+
"metadata": {
|
230 |
+
"id": "y5OqQjqRdokC"
|
231 |
+
},
|
232 |
+
"source": [
|
233 |
+
"For the Hugging Face AutoTrain, we would need the data in the CSV format so that we would save the data with the following code."
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": 4,
|
239 |
+
"metadata": {
|
240 |
+
"id": "QMaTqtpfdjoj"
|
241 |
+
},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"train.to_csv('train.csv', index = False)"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "markdown",
|
249 |
+
"metadata": {
|
250 |
+
"id": "UpGg8NRKdsEQ"
|
251 |
+
},
|
252 |
+
"source": [
|
253 |
+
"If you want to fine-tune the Mistral 7B Instruct v0.1 for conversation and question answering, we need to follow the chat template format provided by Mistral, shown in the code block below.\n",
|
254 |
+
"\n",
|
255 |
+
"```\n",
|
256 |
+
"<s>[INST] Instruction [/INST] Model answer</s>[INST] Follow-up instruction [/INST]\n",
|
257 |
+
"```"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "markdown",
|
262 |
+
"metadata": {
|
263 |
+
"id": "zUkxtYZ-eDxR"
|
264 |
+
},
|
265 |
+
"source": [
|
266 |
+
"We would use only the data without any input for the chat model."
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 5,
|
272 |
+
"metadata": {
|
273 |
+
"id": "pMduUpJmdrKg"
|
274 |
+
},
|
275 |
+
"outputs": [],
|
276 |
+
"source": [
|
277 |
+
"train_chat = train[train['input'] == ''].reset_index(drop = True).copy()"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "markdown",
|
282 |
+
"metadata": {
|
283 |
+
"id": "m_jN0bDEeRba"
|
284 |
+
},
|
285 |
+
"source": [
|
286 |
+
"Then, we could reformat the data with the following code."
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 6,
|
292 |
+
"metadata": {
|
293 |
+
"id": "y5d5KjKseRxs"
|
294 |
+
},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"def chat_formatting(data):\n",
|
298 |
+
"\n",
|
299 |
+
" text = f\"<s>[INST] {data['instruction']} [/INST] {data['output']} </s>\"\n",
|
300 |
+
"\n",
|
301 |
+
" return text\n",
|
302 |
+
"\n",
|
303 |
+
"train_chat['text'] = train_chat.apply(chat_formatting, axis =1)\n",
|
304 |
+
"train_chat.to_csv('train_chat.csv', index =False)"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "markdown",
|
309 |
+
"metadata": {
|
310 |
+
"id": "uPxeXTsweZor"
|
311 |
+
},
|
312 |
+
"source": [
|
313 |
+
"# Training and Fine-tuning\n",
|
314 |
+
"\n",
|
315 |
+
"\n",
|
316 |
+
"Let’s set up the Hugging Face AutoTrain environment to fine-tune the Mistral model. First, let’s run the AutoTrain setup using the following command."
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 7,
|
322 |
+
"metadata": {
|
323 |
+
"colab": {
|
324 |
+
"base_uri": "https://localhost:8080/"
|
325 |
+
},
|
326 |
+
"id": "du0G6-fCeUI4",
|
327 |
+
"outputId": "309254c2-1210-4b6f-ea61-3fa642db07e6"
|
328 |
+
},
|
329 |
+
"outputs": [
|
330 |
+
{
|
331 |
+
"name": "stdout",
|
332 |
+
"output_type": "stream",
|
333 |
+
"text": [
|
334 |
+
"> \u001b[1mINFO Installing latest xformers\u001b[0m\n",
|
335 |
+
"> \u001b[1mINFO Successfully installed latest xformers\u001b[0m\n"
|
336 |
+
]
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"!autotrain setup"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 8,
|
346 |
+
"metadata": {
|
347 |
+
"id": "TkxXDYnFgl1d"
|
348 |
+
},
|
349 |
+
"outputs": [],
|
350 |
+
"source": [
|
351 |
+
"!mkdir data\n"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "markdown",
|
356 |
+
"metadata": {
|
357 |
+
"id": "YAlexnSeelKL"
|
358 |
+
},
|
359 |
+
"source": [
|
360 |
+
"let’s use the Mistral 7B Instruct v0.1."
|
361 |
+
]
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"execution_count": 9,
|
366 |
+
"metadata": {
|
367 |
+
"id": "gomc9H3zemN-"
|
368 |
+
},
|
369 |
+
"outputs": [],
|
370 |
+
"source": [
|
371 |
+
"project_name = 'my_autotrain_llm'\n",
|
372 |
+
"model_name = 'mistralai/Mistral-7B-Instruct-v0.1'"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "markdown",
|
377 |
+
"metadata": {
|
378 |
+
"id": "qg_3MVYAeti5"
|
379 |
+
},
|
380 |
+
"source": [
|
381 |
+
"Then, we would add the Hugging Face information if you want to push your model to the repository."
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"execution_count": 10,
|
387 |
+
"metadata": {
|
388 |
+
"id": "8_AHiHnWeoNI"
|
389 |
+
},
|
390 |
+
"outputs": [],
|
391 |
+
"source": [
|
392 |
+
"push_to_hub = True\n",
|
393 |
+
"hf_token = \"\"\n",
|
394 |
+
"repo_id = \"Andyrasika/mistral_autotrain_llm\""
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "markdown",
|
399 |
+
"metadata": {
|
400 |
+
"id": "_YSh92jHfGc7"
|
401 |
+
},
|
402 |
+
"source": [
|
403 |
+
"Lastly, we would initiate the model parameter information in the variables below. You can change them to see if the result is good."
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 11,
|
409 |
+
"metadata": {
|
410 |
+
"id": "4CgrMR_LfBEp"
|
411 |
+
},
|
412 |
+
"outputs": [],
|
413 |
+
"source": [
|
414 |
+
"learning_rate = 2e-4\n",
|
415 |
+
"num_epochs = 4\n",
|
416 |
+
"batch_size = 1\n",
|
417 |
+
"block_size = 1024\n",
|
418 |
+
"trainer = \"sft\"\n",
|
419 |
+
"warmup_ratio = 0.1\n",
|
420 |
+
"weight_decay = 0.01\n",
|
421 |
+
"gradient_accumulation = 4\n",
|
422 |
+
"use_fp16 = True\n",
|
423 |
+
"use_peft = True\n",
|
424 |
+
"use_int4 = True\n",
|
425 |
+
"lora_r = 16\n",
|
426 |
+
"lora_alpha = 32\n",
|
427 |
+
"lora_dropout = 0.045"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"cell_type": "markdown",
|
432 |
+
"metadata": {
|
433 |
+
"id": "oSzTX6CIfSsQ"
|
434 |
+
},
|
435 |
+
"source": [
|
436 |
+
"When all the information is ready, we will set up the environment to accept all the information we have set up previously."
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"execution_count": 12,
|
442 |
+
"metadata": {
|
443 |
+
"id": "D2hxzc4VfE2r"
|
444 |
+
},
|
445 |
+
"outputs": [],
|
446 |
+
"source": [
|
447 |
+
"import os\n",
|
448 |
+
"os.environ[\"PROJECT_NAME\"] = project_name\n",
|
449 |
+
"os.environ[\"MODEL_NAME\"] = model_name\n",
|
450 |
+
"os.environ[\"PUSH_TO_HUB\"] = str(push_to_hub)\n",
|
451 |
+
"os.environ[\"HF_TOKEN\"] = hf_token\n",
|
452 |
+
"os.environ[\"REPO_ID\"] = repo_id\n",
|
453 |
+
"os.environ[\"LEARNING_RATE\"] = str(learning_rate)\n",
|
454 |
+
"os.environ[\"NUM_EPOCHS\"] = str(num_epochs)\n",
|
455 |
+
"os.environ[\"BATCH_SIZE\"] = str(batch_size)\n",
|
456 |
+
"os.environ[\"BLOCK_SIZE\"] = str(block_size)\n",
|
457 |
+
"os.environ[\"WARMUP_RATIO\"] = str(warmup_ratio)\n",
|
458 |
+
"os.environ[\"WEIGHT_DECAY\"] = str(weight_decay)\n",
|
459 |
+
"os.environ[\"GRADIENT_ACCUMULATION\"] = str(gradient_accumulation)\n",
|
460 |
+
"os.environ[\"USE_FP16\"] = str(use_fp16)\n",
|
461 |
+
"os.environ[\"USE_PEFT\"] = str(use_peft)\n",
|
462 |
+
"os.environ[\"USE_INT4\"] = str(use_int4)\n",
|
463 |
+
"os.environ[\"LORA_R\"] = str(lora_r)\n",
|
464 |
+
"os.environ[\"LORA_ALPHA\"] = str(lora_alpha)\n",
|
465 |
+
"os.environ[\"LORA_DROPOUT\"] = str(lora_dropout)"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"cell_type": "code",
|
470 |
+
"execution_count": 17,
|
471 |
+
"metadata": {
|
472 |
+
"colab": {
|
473 |
+
"base_uri": "https://localhost:8080/"
|
474 |
+
},
|
475 |
+
"id": "1Aea0SPPfU-o",
|
476 |
+
"outputId": "866a7737-ee30-4807-9ac2-cea83f7c9759"
|
477 |
+
},
|
478 |
+
"outputs": [
|
479 |
+
{
|
480 |
+
"name": "stdout",
|
481 |
+
"output_type": "stream",
|
482 |
+
"text": [
|
483 |
+
"> \u001b[1mINFO Running LLM\u001b[0m\n",
|
484 |
+
"> \u001b[1mINFO Params: Namespace(version=False, train=True, deploy=False, inference=False, data_path='data/', train_split='train', valid_split=None, text_column='text', rejected_text_column='rejected', prompt_text_column='prompt', model='mistralai/Mistral-7B-Instruct-v0.1', model_ref=None, learning_rate=0.0002, num_train_epochs=4, train_batch_size=1, warmup_ratio=0.1, gradient_accumulation_steps=4, optimizer='adamw_torch', scheduler='linear', weight_decay=0.01, max_grad_norm=1.0, seed=42, add_eos_token=False, block_size=1024, use_peft=True, lora_r=16, lora_alpha=32, lora_dropout=0.045, logging_steps=-1, project_name='my_autotrain_llm', evaluation_strategy='epoch', save_total_limit=1, save_strategy='epoch', auto_find_batch_size=False, fp16=True, push_to_hub=True, use_int8=False, model_max_length=1024, repo_id='Andyrasika/mistral_autotrain_llm', use_int4=True, trainer='default', target_modules='q_proj,v_proj', merge_adapter=False, token='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', backend='default', username=None, use_flash_attention_2=False, log='none', disable_gradient_checkpointing=False, dpo_beta=0.1, func=<function run_llm_command_factory at 0x7fd29fe97b50>)\u001b[0m\n",
|
485 |
+
"Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n",
|
486 |
+
"Loading checkpoint shards: 100%|██████████████████| 2/2 [00:10<00:00, 5.27s/it]\n",
|
487 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py:374: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.\n",
|
488 |
+
" warnings.warn(\n",
|
489 |
+
"> \u001b[1mINFO Using block size 1024\u001b[0m\n",
|
490 |
+
"Running tokenizer on train dataset: 100%|█| 2919/2919 [00:00<00:00, 16401.43 exa\n",
|
491 |
+
"Grouping texts in chunks of 1024 (num_proc=4): 100%|█| 2919/2919 [00:00<00:00, 8\n",
|
492 |
+
"/usr/local/lib/python3.10/dist-packages/datasets/table.py:1395: FutureWarning: promote has been superseded by mode='default'.\n",
|
493 |
+
" block_group = [InMemoryTable(cls._concat_blocks(list(block_group), axis=axis))]\n",
|
494 |
+
"/usr/local/lib/python3.10/dist-packages/datasets/table.py:1421: FutureWarning: promote has been superseded by mode='default'.\n",
|
495 |
+
" table = cls._concat_blocks(blocks, axis=0)\n",
|
496 |
+
"> \u001b[1mINFO creating trainer\u001b[0m\n",
|
497 |
+
"Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n",
|
498 |
+
" 0%| | 0/272 [00:00<?, ?it/s]/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
499 |
+
" warnings.warn(\n",
|
500 |
+
"{'loss': 1.6221, 'learning_rate': 0.00017868852459016393, 'epoch': 0.79} \n",
|
501 |
+
" 25%|██████████▌ | 68/272 [06:12<18:36, 5.47s/it]/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
502 |
+
" warnings.warn(\n",
|
503 |
+
"{'loss': 1.1985, 'learning_rate': 0.00013442622950819673, 'epoch': 1.58} \n",
|
504 |
+
" 50%|████████████████████▋ | 137/272 [12:30<12:19, 5.48s/it]/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
505 |
+
" warnings.warn(\n",
|
506 |
+
"{'loss': 1.1718, 'learning_rate': 9.016393442622952e-05, 'epoch': 2.36} \n",
|
507 |
+
" 75%|██████████████████████████████▉ | 205/272 [18:43<06:06, 5.48s/it]/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
|
508 |
+
" warnings.warn(\n",
|
509 |
+
"{'loss': 1.1195, 'learning_rate': 4.672131147540984e-05, 'epoch': 3.15} \n",
|
510 |
+
"{'loss': 1.0857, 'learning_rate': 2.459016393442623e-06, 'epoch': 3.94} \n",
|
511 |
+
"{'train_runtime': 1490.6488, 'train_samples_per_second': 0.735, 'train_steps_per_second': 0.182, 'train_loss': 1.2388554951723885, 'epoch': 3.97}\n",
|
512 |
+
"100%|█████████████████████████████████████████| 272/272 [24:50<00:00, 5.48s/it]\n",
|
513 |
+
"> \u001b[1mINFO Finished training, saving model...\u001b[0m\n",
|
514 |
+
"> \u001b[1mINFO Pushing model to hub...\u001b[0m\n",
|
515 |
+
"adapter_model.bin: 0%| | 0.00/27.3M [00:00<?, ?B/s]\n",
|
516 |
+
"adapter_model.bin: 0%| | 0.00/27.3M [00:00<?, ?B/s]\u001b[A\n",
|
517 |
+
"\n",
|
518 |
+
"optimizer.pt: 0%| | 0.00/54.6M [00:00<?, ?B/s]\u001b[A\u001b[A\n",
|
519 |
+
"\n",
|
520 |
+
"\n",
|
521 |
+
"Upload 10 LFS files: 0%| | 0/10 [00:00<?, ?it/s]\u001b[A\u001b[A\u001b[A\n",
|
522 |
+
"\n",
|
523 |
+
"\n",
|
524 |
+
"\n",
|
525 |
+
"pytorch_model.bin: 0%| | 0.00/888 [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
526 |
+
"\n",
|
527 |
+
"\n",
|
528 |
+
"\n",
|
529 |
+
"\n",
|
530 |
+
"rng_state.pth: 0%| | 0.00/14.2k [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
"\n",
|
534 |
+
"pytorch_model.bin: 100%|███████████████████████| 888/888 [00:00<00:00, 1.48kB/s]\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
535 |
+
"\n",
|
536 |
+
"\n",
|
537 |
+
"\n",
|
538 |
+
"\n",
|
539 |
+
"rng_state.pth: 58%|█████████████▏ | 8.19k/14.2k [00:00<00:00, 13.5kB/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
540 |
+
"adapter_model.bin: 0%| | 8.19k/27.3M [00:00<36:31, 12.5kB/s]\u001b[A\n",
|
541 |
+
"\n",
|
542 |
+
"optimizer.pt: 0%| | 8.19k/54.6M [00:00<1:11:58, 12.6kB/s]\u001b[A\u001b[A\n",
|
543 |
+
"adapter_model.bin: 9%|█▊ | 2.57M/27.3M [00:00<00:05, 4.56MB/s]\u001b[A\n",
|
544 |
+
"\n",
|
545 |
+
"pytorch_model.bin: 100%|███████████████████████| 888/888 [00:00<00:00, 1.18kB/s]\u001b[A\u001b[A\n",
|
546 |
+
"\n",
|
547 |
+
"adapter_model.bin: 20%|███▊ | 5.55M/27.3M [00:00<00:02, 8.02MB/s]\u001b[A\n",
|
548 |
+
"\n",
|
549 |
+
"adapter_model.bin: 16%|███ | 4.37M/27.3M [00:00<00:03, 6.20MB/s]\u001b[A\u001b[A\n",
|
550 |
+
"adapter_model.bin: 29%|█████▍ | 7.81M/27.3M [00:01<00:01, 10.7MB/s]\u001b[A\n",
|
551 |
+
"\n",
|
552 |
+
"rng_state.pth: 100%|███████████████████████| 14.2k/14.2k [00:01<00:00, 13.2kB/s]\u001b[A\u001b[A\n",
|
553 |
+
"\n",
|
554 |
+
"\n",
|
555 |
+
"adapter_model.bin: 31%|█████▊ | 8.40M/27.3M [00:01<00:01, 11.2MB/s]\u001b[A\u001b[A\n",
|
556 |
+
"adapter_model.bin: 38%|███████▎ | 10.4M/27.3M [00:01<00:01, 10.6MB/s]\u001b[A\n",
|
557 |
+
"\n",
|
558 |
+
"\n",
|
559 |
+
"\n",
|
560 |
+
"scheduler.pt: 0%| | 0.00/1.06k [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
561 |
+
"\n",
|
562 |
+
"adapter_model.bin: 43%|████████▏ | 11.8M/27.3M [00:01<00:01, 13.3MB/s]\u001b[A\u001b[A\n",
|
563 |
+
"adapter_model.bin: 50%|█████████▌ | 13.7M/27.3M [00:01<00:01, 13.0MB/s]\u001b[A\n",
|
564 |
+
"\n",
|
565 |
+
"adapter_model.bin: 55%|██████████▌ | 15.1M/27.3M [00:01<00:00, 16.0MB/s]\u001b[A\u001b[A\n",
|
566 |
+
"\n",
|
567 |
+
"\n",
|
568 |
+
"\n",
|
569 |
+
"\n",
|
570 |
+
"scheduler.pt: 100%|████████████████████████| 1.06k/1.06k [00:00<00:00, 2.74kB/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
571 |
+
"\n",
|
572 |
+
"\n",
|
573 |
+
"\n",
|
574 |
+
"\n",
|
575 |
+
"training_args.bin: 0%| | 0.00/4.47k [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
576 |
+
"adapter_model.bin: 59%|███████████▏ | 16.0M/27.3M [00:01<00:01, 8.57MB/s]\u001b[A\n",
|
577 |
+
"\n",
|
578 |
+
"adapter_model.bin: 62%|███████████▊ | 17.0M/27.3M [00:02<00:01, 8.69MB/s]\u001b[A\u001b[A\n",
|
579 |
+
"\n",
|
580 |
+
"optimizer.pt: 39%|█████████▍ | 21.5M/54.6M [00:02<00:02, 14.6MB/s]\u001b[A\u001b[A\n",
|
581 |
+
"tokenizer.model: 100%|████████████████████████| 493k/493k [00:00<00:00, 881kB/s]\u001b[A\n",
|
582 |
+
"adapter_model.bin: 74%|█████████████▉ | 20.1M/27.3M [00:02<00:00, 11.3MB/s]\n",
|
583 |
+
"\n",
|
584 |
+
"training_args.bin: 100%|███████████████████| 4.47k/4.47k [00:00<00:00, 17.7kB/s]\u001b[A\u001b[A\n",
|
585 |
+
"\n",
|
586 |
+
"adapter_model.bin: 82%|███████████████▌ | 22.4M/27.3M [00:02<00:00, 13.1MB/s]\u001b[A\n",
|
587 |
+
"\n",
|
588 |
+
"optimizer.pt: 49%|███████████▋ | 26.7M/54.6M [00:02<00:01, 18.6MB/s]\u001b[A\u001b[A\n",
|
589 |
+
"\n",
|
590 |
+
"\n",
|
591 |
+
"\n",
|
592 |
+
"adapter_model.bin: 93%|█████████████████▋ | 25.4M/27.3M [00:02<00:00, 16.0MB/s]\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
593 |
+
"\n",
|
594 |
+
"\n",
|
595 |
+
"\n",
|
596 |
+
"\n",
|
597 |
+
"training_args.bin: 0%| | 0.00/4.47k [00:00<?, ?B/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\n",
|
598 |
+
"\n",
|
599 |
+
"optimizer.pt: 59%|██████████████ | 32.0M/54.6M [00:02<00:01, 18.4MB/s]\u001b[A\u001b[A\n",
|
600 |
+
"adapter_model.bin: 96%|██████████████████▏| 26.2M/27.3M [00:02<00:00, 11.5MB/s]\u001b[A\n",
|
601 |
+
"\n",
|
602 |
+
"training_args.bin: 100%|███████████████████| 4.47k/4.47k [00:00<00:00, 11.7kB/s]\u001b[A\u001b[A\n",
|
603 |
+
"\n",
|
604 |
+
"\n",
|
605 |
+
"tokenizer.model: 100%|████████████████████████| 493k/493k [00:00<00:00, 643kB/s]\u001b[A\u001b[A\n",
|
606 |
+
"adapter_model.bin: 100%|███████████████████| 27.3M/27.3M [00:03<00:00, 8.30MB/s]\n",
|
607 |
+
"\n",
|
608 |
+
"\n",
|
609 |
+
"adapter_model.bin: 100%|███████████████████| 27.3M/27.3M [00:03<00:00, 7.91MB/s]\u001b[A\u001b[A\n",
|
610 |
+
"\n",
|
611 |
+
"\n",
|
612 |
+
"optimizer.pt: 88%|█████████████████████▏ | 48.1M/54.6M [00:03<00:00, 10.6MB/s]\u001b[A\u001b[A\n",
|
613 |
+
"\n",
|
614 |
+
"\n",
|
615 |
+
"optimizer.pt: 100%|████████████████████████| 54.6M/54.6M [00:04<00:00, 11.3MB/s]\u001b[A\u001b[A\u001b[A\n",
|
616 |
+
"\n",
|
617 |
+
"\n",
|
618 |
+
"\n",
|
619 |
+
"Upload 10 LFS files: 100%|██████████████████████| 10/10 [00:05<00:00, 1.91it/s]\u001b[A\u001b[A\u001b[A\n"
|
620 |
+
]
|
621 |
+
}
|
622 |
+
],
|
623 |
+
"source": [
|
624 |
+
"!autotrain llm \\\n",
|
625 |
+
"--train \\\n",
|
626 |
+
"--model ${MODEL_NAME} \\\n",
|
627 |
+
"--project-name ${PROJECT_NAME} \\\n",
|
628 |
+
"--data-path data/ \\\n",
|
629 |
+
"--text-column text \\\n",
|
630 |
+
"--lr ${LEARNING_RATE} \\\n",
|
631 |
+
"--batch-size ${BATCH_SIZE} \\\n",
|
632 |
+
"--epochs ${NUM_EPOCHS} \\\n",
|
633 |
+
"--block-size ${BLOCK_SIZE} \\\n",
|
634 |
+
"--warmup-ratio ${WARMUP_RATIO} \\\n",
|
635 |
+
"--lora-r ${LORA_R} \\\n",
|
636 |
+
"--lora-alpha ${LORA_ALPHA} \\\n",
|
637 |
+
"--lora-dropout ${LORA_DROPOUT} \\\n",
|
638 |
+
"--target_modules q_proj,v_proj \\\n",
|
639 |
+
"--weight-decay ${WEIGHT_DECAY} \\\n",
|
640 |
+
"--gradient-accumulation ${GRADIENT_ACCUMULATION} \\\n",
|
641 |
+
"$( [[ \"$USE_FP16\" == \"True\" ]] && echo \"--fp16\" ) \\\n",
|
642 |
+
"$( [[ \"$USE_PEFT\" == \"True\" ]] && echo \"--use-peft\" ) \\\n",
|
643 |
+
"$( [[ \"$USE_INT4\" == \"True\" ]] && echo \"--use-int4\" ) \\\n",
|
644 |
+
"$( [[ \"$PUSH_TO_HUB\" == \"True\" ]] && echo \"--push-to-hub --token ${HF_TOKEN} --repo-id ${REPO_ID}\" )"
|
645 |
+
]
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"cell_type": "code",
|
649 |
+
"execution_count": 21,
|
650 |
+
"metadata": {},
|
651 |
+
"outputs": [
|
652 |
+
{
|
653 |
+
"data": {
|
654 |
+
"application/vnd.jupyter.widget-view+json": {
|
655 |
+
"model_id": "df8a23a00d324ce9b75ab46be15c45c1",
|
656 |
+
"version_major": 2,
|
657 |
+
"version_minor": 0
|
658 |
+
},
|
659 |
+
"text/plain": [
|
660 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
661 |
+
]
|
662 |
+
},
|
663 |
+
"metadata": {},
|
664 |
+
"output_type": "display_data"
|
665 |
+
}
|
666 |
+
],
|
667 |
+
"source": [
|
668 |
+
"from huggingface_hub import notebook_login\n",
|
669 |
+
"notebook_login()"
|
670 |
+
]
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"cell_type": "code",
|
674 |
+
"execution_count": 22,
|
675 |
+
"metadata": {
|
676 |
+
"id": "7KCWb68ufYNx"
|
677 |
+
},
|
678 |
+
"outputs": [
|
679 |
+
{
|
680 |
+
"data": {
|
681 |
+
"application/vnd.jupyter.widget-view+json": {
|
682 |
+
"model_id": "52b6379edab4461ea5e6ac2b1a38648a",
|
683 |
+
"version_major": 2,
|
684 |
+
"version_minor": 0
|
685 |
+
},
|
686 |
+
"text/plain": [
|
687 |
+
"Downloading (…)okenizer_config.json: 0%| | 0.00/1.39k [00:00<?, ?B/s]"
|
688 |
+
]
|
689 |
+
},
|
690 |
+
"metadata": {},
|
691 |
+
"output_type": "display_data"
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"data": {
|
695 |
+
"application/vnd.jupyter.widget-view+json": {
|
696 |
+
"model_id": "f5d783597eb84c628a9a72023ac94806",
|
697 |
+
"version_major": 2,
|
698 |
+
"version_minor": 0
|
699 |
+
},
|
700 |
+
"text/plain": [
|
701 |
+
"Downloading tokenizer.model: 0%| | 0.00/493k [00:00<?, ?B/s]"
|
702 |
+
]
|
703 |
+
},
|
704 |
+
"metadata": {},
|
705 |
+
"output_type": "display_data"
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"data": {
|
709 |
+
"application/vnd.jupyter.widget-view+json": {
|
710 |
+
"model_id": "adef9f06343b4549b22cd565152a0f98",
|
711 |
+
"version_major": 2,
|
712 |
+
"version_minor": 0
|
713 |
+
},
|
714 |
+
"text/plain": [
|
715 |
+
"Downloading (…)/main/tokenizer.json: 0%| | 0.00/1.80M [00:00<?, ?B/s]"
|
716 |
+
]
|
717 |
+
},
|
718 |
+
"metadata": {},
|
719 |
+
"output_type": "display_data"
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"data": {
|
723 |
+
"application/vnd.jupyter.widget-view+json": {
|
724 |
+
"model_id": "2a674d46e0084d61abebde36e42c0774",
|
725 |
+
"version_major": 2,
|
726 |
+
"version_minor": 0
|
727 |
+
},
|
728 |
+
"text/plain": [
|
729 |
+
"Downloading (…)cial_tokens_map.json: 0%| | 0.00/437 [00:00<?, ?B/s]"
|
730 |
+
]
|
731 |
+
},
|
732 |
+
"metadata": {},
|
733 |
+
"output_type": "display_data"
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"data": {
|
737 |
+
"application/vnd.jupyter.widget-view+json": {
|
738 |
+
"model_id": "aed414ba3d4544178e159b9840f1f4b6",
|
739 |
+
"version_major": 2,
|
740 |
+
"version_minor": 0
|
741 |
+
},
|
742 |
+
"text/plain": [
|
743 |
+
"Downloading (…)/adapter_config.json: 0%| | 0.00/458 [00:00<?, ?B/s]"
|
744 |
+
]
|
745 |
+
},
|
746 |
+
"metadata": {},
|
747 |
+
"output_type": "display_data"
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"data": {
|
751 |
+
"application/vnd.jupyter.widget-view+json": {
|
752 |
+
"model_id": "65f87796eb044b73859b43bf5e435759",
|
753 |
+
"version_major": 2,
|
754 |
+
"version_minor": 0
|
755 |
+
},
|
756 |
+
"text/plain": [
|
757 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
758 |
+
]
|
759 |
+
},
|
760 |
+
"metadata": {},
|
761 |
+
"output_type": "display_data"
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"data": {
|
765 |
+
"application/vnd.jupyter.widget-view+json": {
|
766 |
+
"model_id": "23dccfc550ad436a9f53f909478f2e26",
|
767 |
+
"version_major": 2,
|
768 |
+
"version_minor": 0
|
769 |
+
},
|
770 |
+
"text/plain": [
|
771 |
+
"Downloading adapter_model.bin: 0%| | 0.00/27.3M [00:00<?, ?B/s]"
|
772 |
+
]
|
773 |
+
},
|
774 |
+
"metadata": {},
|
775 |
+
"output_type": "display_data"
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"source": [
|
779 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
780 |
+
"\n",
|
781 |
+
"model_path = \"Andyrasika/mistral_autotrain_llm\"\n",
|
782 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_path)\n",
|
783 |
+
"model = AutoModelForCausalLM.from_pretrained(model_path)"
|
784 |
+
]
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"cell_type": "code",
|
788 |
+
"execution_count": 23,
|
789 |
+
"metadata": {},
|
790 |
+
"outputs": [
|
791 |
+
{
|
792 |
+
"name": "stderr",
|
793 |
+
"output_type": "stream",
|
794 |
+
"text": [
|
795 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
|
796 |
+
"Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n",
|
797 |
+
"/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1260: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
|
798 |
+
" warnings.warn(\n"
|
799 |
+
]
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"name": "stdout",
|
803 |
+
"output_type": "stream",
|
804 |
+
"text": [
|
805 |
+
"<s> Health benefits of regular exercise include improved cardiovascular health, increased strength and flexibility, improved mental\n"
|
806 |
+
]
|
807 |
+
}
|
808 |
+
],
|
809 |
+
"source": [
|
810 |
+
"input_text = \"Health benefits of regular exercise\"\n",
|
811 |
+
"input_ids = tokenizer.encode(input_text, return_tensors=\"pt\")\n",
|
812 |
+
"output = model.generate(input_ids)\n",
|
813 |
+
"predicted_text = tokenizer.decode(output[0], skip_special_tokens=False)\n",
|
814 |
+
"print(predicted_text)"
|
815 |
+
]
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"cell_type": "code",
|
819 |
+
"execution_count": null,
|
820 |
+
"metadata": {},
|
821 |
+
"outputs": [],
|
822 |
+
"source": []
|
823 |
+
}
|
824 |
+
],
|
825 |
+
"metadata": {
|
826 |
+
"accelerator": "GPU",
|
827 |
+
"colab": {
|
828 |
+
"gpuType": "T4",
|
829 |
+
"provenance": []
|
830 |
+
},
|
831 |
+
"kernelspec": {
|
832 |
+
"display_name": "Python 3 (ipykernel)",
|
833 |
+
"language": "python",
|
834 |
+
"name": "python3"
|
835 |
+
},
|
836 |
+
"language_info": {
|
837 |
+
"codemirror_mode": {
|
838 |
+
"name": "ipython",
|
839 |
+
"version": 3
|
840 |
+
},
|
841 |
+
"file_extension": ".py",
|
842 |
+
"mimetype": "text/x-python",
|
843 |
+
"name": "python",
|
844 |
+
"nbconvert_exporter": "python",
|
845 |
+
"pygments_lexer": "ipython3",
|
846 |
+
"version": "3.10.12"
|
847 |
+
},
|
848 |
+
"widgets": {
|
849 |
+
"application/vnd.jupyter.widget-state+json": {
|
850 |
+
"0246b46f672247dab14d0ddd0c0a25ec": {
|
851 |
+
"model_module": "@jupyter-widgets/base",
|
852 |
+
"model_module_version": "1.2.0",
|
853 |
+
"model_name": "LayoutModel",
|
854 |
+
"state": {
|
855 |
+
"_model_module": "@jupyter-widgets/base",
|
856 |
+
"_model_module_version": "1.2.0",
|
857 |
+
"_model_name": "LayoutModel",
|
858 |
+
"_view_count": null,
|
859 |
+
"_view_module": "@jupyter-widgets/base",
|
860 |
+
"_view_module_version": "1.2.0",
|
861 |
+
"_view_name": "LayoutView",
|
862 |
+
"align_content": null,
|
863 |
+
"align_items": null,
|
864 |
+
"align_self": null,
|
865 |
+
"border": null,
|
866 |
+
"bottom": null,
|
867 |
+
"display": null,
|
868 |
+
"flex": null,
|
869 |
+
"flex_flow": null,
|
870 |
+
"grid_area": null,
|
871 |
+
"grid_auto_columns": null,
|
872 |
+
"grid_auto_flow": null,
|
873 |
+
"grid_auto_rows": null,
|
874 |
+
"grid_column": null,
|
875 |
+
"grid_gap": null,
|
876 |
+
"grid_row": null,
|
877 |
+
"grid_template_areas": null,
|
878 |
+
"grid_template_columns": null,
|
879 |
+
"grid_template_rows": null,
|
880 |
+
"height": null,
|
881 |
+
"justify_content": null,
|
882 |
+
"justify_items": null,
|
883 |
+
"left": null,
|
884 |
+
"margin": null,
|
885 |
+
"max_height": null,
|
886 |
+
"max_width": null,
|
887 |
+
"min_height": null,
|
888 |
+
"min_width": null,
|
889 |
+
"object_fit": null,
|
890 |
+
"object_position": null,
|
891 |
+
"order": null,
|
892 |
+
"overflow": null,
|
893 |
+
"overflow_x": null,
|
894 |
+
"overflow_y": null,
|
895 |
+
"padding": null,
|
896 |
+
"right": null,
|
897 |
+
"top": null,
|
898 |
+
"visibility": null,
|
899 |
+
"width": null
|
900 |
+
}
|
901 |
+
},
|
902 |
+
"03469a3882de440cb6a8c36b5a4568d6": {
|
903 |
+
"model_module": "@jupyter-widgets/controls",
|
904 |
+
"model_module_version": "1.5.0",
|
905 |
+
"model_name": "HTMLModel",
|
906 |
+
"state": {
|
907 |
+
"_dom_classes": [],
|
908 |
+
"_model_module": "@jupyter-widgets/controls",
|
909 |
+
"_model_module_version": "1.5.0",
|
910 |
+
"_model_name": "HTMLModel",
|
911 |
+
"_view_count": null,
|
912 |
+
"_view_module": "@jupyter-widgets/controls",
|
913 |
+
"_view_module_version": "1.5.0",
|
914 |
+
"_view_name": "HTMLView",
|
915 |
+
"description": "",
|
916 |
+
"description_tooltip": null,
|
917 |
+
"layout": "IPY_MODEL_d7708c22d8a34082b80a14302983159e",
|
918 |
+
"placeholder": "",
|
919 |
+
"style": "IPY_MODEL_c59da8b062a84afebfad5da6ef5a496a",
|
920 |
+
"value": " 1/1 [00:01<00:00, 1.00s/it]"
|
921 |
+
}
|
922 |
+
},
|
923 |
+
"067ebf5a471e4546bc631f290411a664": {
|
924 |
+
"model_module": "@jupyter-widgets/controls",
|
925 |
+
"model_module_version": "1.5.0",
|
926 |
+
"model_name": "HTMLModel",
|
927 |
+
"state": {
|
928 |
+
"_dom_classes": [],
|
929 |
+
"_model_module": "@jupyter-widgets/controls",
|
930 |
+
"_model_module_version": "1.5.0",
|
931 |
+
"_model_name": "HTMLModel",
|
932 |
+
"_view_count": null,
|
933 |
+
"_view_module": "@jupyter-widgets/controls",
|
934 |
+
"_view_module_version": "1.5.0",
|
935 |
+
"_view_name": "HTMLView",
|
936 |
+
"description": "",
|
937 |
+
"description_tooltip": null,
|
938 |
+
"layout": "IPY_MODEL_6385ed14895f414c8eda670301ebead9",
|
939 |
+
"placeholder": "",
|
940 |
+
"style": "IPY_MODEL_f902ed42a30e476a8d508c50fa9fc602",
|
941 |
+
"value": "Extracting data files: 100%"
|
942 |
+
}
|
943 |
+
},
|
944 |
+
"196e0ec8434747279843840fc4c826f0": {
|
945 |
+
"model_module": "@jupyter-widgets/base",
|
946 |
+
"model_module_version": "1.2.0",
|
947 |
+
"model_name": "LayoutModel",
|
948 |
+
"state": {
|
949 |
+
"_model_module": "@jupyter-widgets/base",
|
950 |
+
"_model_module_version": "1.2.0",
|
951 |
+
"_model_name": "LayoutModel",
|
952 |
+
"_view_count": null,
|
953 |
+
"_view_module": "@jupyter-widgets/base",
|
954 |
+
"_view_module_version": "1.2.0",
|
955 |
+
"_view_name": "LayoutView",
|
956 |
+
"align_content": null,
|
957 |
+
"align_items": null,
|
958 |
+
"align_self": null,
|
959 |
+
"border": null,
|
960 |
+
"bottom": null,
|
961 |
+
"display": null,
|
962 |
+
"flex": null,
|
963 |
+
"flex_flow": null,
|
964 |
+
"grid_area": null,
|
965 |
+
"grid_auto_columns": null,
|
966 |
+
"grid_auto_flow": null,
|
967 |
+
"grid_auto_rows": null,
|
968 |
+
"grid_column": null,
|
969 |
+
"grid_gap": null,
|
970 |
+
"grid_row": null,
|
971 |
+
"grid_template_areas": null,
|
972 |
+
"grid_template_columns": null,
|
973 |
+
"grid_template_rows": null,
|
974 |
+
"height": null,
|
975 |
+
"justify_content": null,
|
976 |
+
"justify_items": null,
|
977 |
+
"left": null,
|
978 |
+
"margin": null,
|
979 |
+
"max_height": null,
|
980 |
+
"max_width": null,
|
981 |
+
"min_height": null,
|
982 |
+
"min_width": null,
|
983 |
+
"object_fit": null,
|
984 |
+
"object_position": null,
|
985 |
+
"order": null,
|
986 |
+
"overflow": null,
|
987 |
+
"overflow_x": null,
|
988 |
+
"overflow_y": null,
|
989 |
+
"padding": null,
|
990 |
+
"right": null,
|
991 |
+
"top": null,
|
992 |
+
"visibility": null,
|
993 |
+
"width": null
|
994 |
+
}
|
995 |
+
},
|
996 |
+
"1c295b1b2f374acfb7f2b7ddcfe3b960": {
|
997 |
+
"model_module": "@jupyter-widgets/controls",
|
998 |
+
"model_module_version": "1.5.0",
|
999 |
+
"model_name": "ProgressStyleModel",
|
1000 |
+
"state": {
|
1001 |
+
"_model_module": "@jupyter-widgets/controls",
|
1002 |
+
"_model_module_version": "1.5.0",
|
1003 |
+
"_model_name": "ProgressStyleModel",
|
1004 |
+
"_view_count": null,
|
1005 |
+
"_view_module": "@jupyter-widgets/base",
|
1006 |
+
"_view_module_version": "1.2.0",
|
1007 |
+
"_view_name": "StyleView",
|
1008 |
+
"bar_color": null,
|
1009 |
+
"description_width": ""
|
1010 |
+
}
|
1011 |
+
},
|
1012 |
+
"1d07551dc3b240da92032bcdc69fd796": {
|
1013 |
+
"model_module": "@jupyter-widgets/controls",
|
1014 |
+
"model_module_version": "1.5.0",
|
1015 |
+
"model_name": "DescriptionStyleModel",
|
1016 |
+
"state": {
|
1017 |
+
"_model_module": "@jupyter-widgets/controls",
|
1018 |
+
"_model_module_version": "1.5.0",
|
1019 |
+
"_model_name": "DescriptionStyleModel",
|
1020 |
+
"_view_count": null,
|
1021 |
+
"_view_module": "@jupyter-widgets/base",
|
1022 |
+
"_view_module_version": "1.2.0",
|
1023 |
+
"_view_name": "StyleView",
|
1024 |
+
"description_width": ""
|
1025 |
+
}
|
1026 |
+
},
|
1027 |
+
"1eb94330421f4fa2bca65b82bedcbfef": {
|
1028 |
+
"model_module": "@jupyter-widgets/base",
|
1029 |
+
"model_module_version": "1.2.0",
|
1030 |
+
"model_name": "LayoutModel",
|
1031 |
+
"state": {
|
1032 |
+
"_model_module": "@jupyter-widgets/base",
|
1033 |
+
"_model_module_version": "1.2.0",
|
1034 |
+
"_model_name": "LayoutModel",
|
1035 |
+
"_view_count": null,
|
1036 |
+
"_view_module": "@jupyter-widgets/base",
|
1037 |
+
"_view_module_version": "1.2.0",
|
1038 |
+
"_view_name": "LayoutView",
|
1039 |
+
"align_content": null,
|
1040 |
+
"align_items": null,
|
1041 |
+
"align_self": null,
|
1042 |
+
"border": null,
|
1043 |
+
"bottom": null,
|
1044 |
+
"display": null,
|
1045 |
+
"flex": null,
|
1046 |
+
"flex_flow": null,
|
1047 |
+
"grid_area": null,
|
1048 |
+
"grid_auto_columns": null,
|
1049 |
+
"grid_auto_flow": null,
|
1050 |
+
"grid_auto_rows": null,
|
1051 |
+
"grid_column": null,
|
1052 |
+
"grid_gap": null,
|
1053 |
+
"grid_row": null,
|
1054 |
+
"grid_template_areas": null,
|
1055 |
+
"grid_template_columns": null,
|
1056 |
+
"grid_template_rows": null,
|
1057 |
+
"height": null,
|
1058 |
+
"justify_content": null,
|
1059 |
+
"justify_items": null,
|
1060 |
+
"left": null,
|
1061 |
+
"margin": null,
|
1062 |
+
"max_height": null,
|
1063 |
+
"max_width": null,
|
1064 |
+
"min_height": null,
|
1065 |
+
"min_width": null,
|
1066 |
+
"object_fit": null,
|
1067 |
+
"object_position": null,
|
1068 |
+
"order": null,
|
1069 |
+
"overflow": null,
|
1070 |
+
"overflow_x": null,
|
1071 |
+
"overflow_y": null,
|
1072 |
+
"padding": null,
|
1073 |
+
"right": null,
|
1074 |
+
"top": null,
|
1075 |
+
"visibility": null,
|
1076 |
+
"width": null
|
1077 |
+
}
|
1078 |
+
},
|
1079 |
+
"208ccbf20b4d4591afa41b7a28588e7e": {
|
1080 |
+
"model_module": "@jupyter-widgets/controls",
|
1081 |
+
"model_module_version": "1.5.0",
|
1082 |
+
"model_name": "FloatProgressModel",
|
1083 |
+
"state": {
|
1084 |
+
"_dom_classes": [],
|
1085 |
+
"_model_module": "@jupyter-widgets/controls",
|
1086 |
+
"_model_module_version": "1.5.0",
|
1087 |
+
"_model_name": "FloatProgressModel",
|
1088 |
+
"_view_count": null,
|
1089 |
+
"_view_module": "@jupyter-widgets/controls",
|
1090 |
+
"_view_module_version": "1.5.0",
|
1091 |
+
"_view_name": "ProgressView",
|
1092 |
+
"bar_style": "success",
|
1093 |
+
"description": "",
|
1094 |
+
"description_tooltip": null,
|
1095 |
+
"layout": "IPY_MODEL_269e619c72dd426ead5677f187c8a42b",
|
1096 |
+
"max": 1,
|
1097 |
+
"min": 0,
|
1098 |
+
"orientation": "horizontal",
|
1099 |
+
"style": "IPY_MODEL_e43fe266c77e495b9b422ccaeda2c03a",
|
1100 |
+
"value": 1
|
1101 |
+
}
|
1102 |
+
},
|
1103 |
+
"22fad0230fe24a43bdace165ee70558d": {
|
1104 |
+
"model_module": "@jupyter-widgets/controls",
|
1105 |
+
"model_module_version": "1.5.0",
|
1106 |
+
"model_name": "FloatProgressModel",
|
1107 |
+
"state": {
|
1108 |
+
"_dom_classes": [],
|
1109 |
+
"_model_module": "@jupyter-widgets/controls",
|
1110 |
+
"_model_module_version": "1.5.0",
|
1111 |
+
"_model_name": "FloatProgressModel",
|
1112 |
+
"_view_count": null,
|
1113 |
+
"_view_module": "@jupyter-widgets/controls",
|
1114 |
+
"_view_module_version": "1.5.0",
|
1115 |
+
"_view_name": "ProgressView",
|
1116 |
+
"bar_style": "success",
|
1117 |
+
"description": "",
|
1118 |
+
"description_tooltip": null,
|
1119 |
+
"layout": "IPY_MODEL_38c99e6e3f454d5ba33d4464fefa82c4",
|
1120 |
+
"max": 7472,
|
1121 |
+
"min": 0,
|
1122 |
+
"orientation": "horizontal",
|
1123 |
+
"style": "IPY_MODEL_63057827544242d9a035c0873bc1d85f",
|
1124 |
+
"value": 7472
|
1125 |
+
}
|
1126 |
+
},
|
1127 |
+
"249766ef96ac467caf7d529c29af60db": {
|
1128 |
+
"model_module": "@jupyter-widgets/controls",
|
1129 |
+
"model_module_version": "1.5.0",
|
1130 |
+
"model_name": "DescriptionStyleModel",
|
1131 |
+
"state": {
|
1132 |
+
"_model_module": "@jupyter-widgets/controls",
|
1133 |
+
"_model_module_version": "1.5.0",
|
1134 |
+
"_model_name": "DescriptionStyleModel",
|
1135 |
+
"_view_count": null,
|
1136 |
+
"_view_module": "@jupyter-widgets/base",
|
1137 |
+
"_view_module_version": "1.2.0",
|
1138 |
+
"_view_name": "StyleView",
|
1139 |
+
"description_width": ""
|
1140 |
+
}
|
1141 |
+
},
|
1142 |
+
"269e619c72dd426ead5677f187c8a42b": {
|
1143 |
+
"model_module": "@jupyter-widgets/base",
|
1144 |
+
"model_module_version": "1.2.0",
|
1145 |
+
"model_name": "LayoutModel",
|
1146 |
+
"state": {
|
1147 |
+
"_model_module": "@jupyter-widgets/base",
|
1148 |
+
"_model_module_version": "1.2.0",
|
1149 |
+
"_model_name": "LayoutModel",
|
1150 |
+
"_view_count": null,
|
1151 |
+
"_view_module": "@jupyter-widgets/base",
|
1152 |
+
"_view_module_version": "1.2.0",
|
1153 |
+
"_view_name": "LayoutView",
|
1154 |
+
"align_content": null,
|
1155 |
+
"align_items": null,
|
1156 |
+
"align_self": null,
|
1157 |
+
"border": null,
|
1158 |
+
"bottom": null,
|
1159 |
+
"display": null,
|
1160 |
+
"flex": null,
|
1161 |
+
"flex_flow": null,
|
1162 |
+
"grid_area": null,
|
1163 |
+
"grid_auto_columns": null,
|
1164 |
+
"grid_auto_flow": null,
|
1165 |
+
"grid_auto_rows": null,
|
1166 |
+
"grid_column": null,
|
1167 |
+
"grid_gap": null,
|
1168 |
+
"grid_row": null,
|
1169 |
+
"grid_template_areas": null,
|
1170 |
+
"grid_template_columns": null,
|
1171 |
+
"grid_template_rows": null,
|
1172 |
+
"height": null,
|
1173 |
+
"justify_content": null,
|
1174 |
+
"justify_items": null,
|
1175 |
+
"left": null,
|
1176 |
+
"margin": null,
|
1177 |
+
"max_height": null,
|
1178 |
+
"max_width": null,
|
1179 |
+
"min_height": null,
|
1180 |
+
"min_width": null,
|
1181 |
+
"object_fit": null,
|
1182 |
+
"object_position": null,
|
1183 |
+
"order": null,
|
1184 |
+
"overflow": null,
|
1185 |
+
"overflow_x": null,
|
1186 |
+
"overflow_y": null,
|
1187 |
+
"padding": null,
|
1188 |
+
"right": null,
|
1189 |
+
"top": null,
|
1190 |
+
"visibility": null,
|
1191 |
+
"width": null
|
1192 |
+
}
|
1193 |
+
},
|
1194 |
+
"29f34d4ed85f45b1bbec6d7f8d1145e6": {
|
1195 |
+
"model_module": "@jupyter-widgets/base",
|
1196 |
+
"model_module_version": "1.2.0",
|
1197 |
+
"model_name": "LayoutModel",
|
1198 |
+
"state": {
|
1199 |
+
"_model_module": "@jupyter-widgets/base",
|
1200 |
+
"_model_module_version": "1.2.0",
|
1201 |
+
"_model_name": "LayoutModel",
|
1202 |
+
"_view_count": null,
|
1203 |
+
"_view_module": "@jupyter-widgets/base",
|
1204 |
+
"_view_module_version": "1.2.0",
|
1205 |
+
"_view_name": "LayoutView",
|
1206 |
+
"align_content": null,
|
1207 |
+
"align_items": null,
|
1208 |
+
"align_self": null,
|
1209 |
+
"border": null,
|
1210 |
+
"bottom": null,
|
1211 |
+
"display": null,
|
1212 |
+
"flex": null,
|
1213 |
+
"flex_flow": null,
|
1214 |
+
"grid_area": null,
|
1215 |
+
"grid_auto_columns": null,
|
1216 |
+
"grid_auto_flow": null,
|
1217 |
+
"grid_auto_rows": null,
|
1218 |
+
"grid_column": null,
|
1219 |
+
"grid_gap": null,
|
1220 |
+
"grid_row": null,
|
1221 |
+
"grid_template_areas": null,
|
1222 |
+
"grid_template_columns": null,
|
1223 |
+
"grid_template_rows": null,
|
1224 |
+
"height": null,
|
1225 |
+
"justify_content": null,
|
1226 |
+
"justify_items": null,
|
1227 |
+
"left": null,
|
1228 |
+
"margin": null,
|
1229 |
+
"max_height": null,
|
1230 |
+
"max_width": null,
|
1231 |
+
"min_height": null,
|
1232 |
+
"min_width": null,
|
1233 |
+
"object_fit": null,
|
1234 |
+
"object_position": null,
|
1235 |
+
"order": null,
|
1236 |
+
"overflow": null,
|
1237 |
+
"overflow_x": null,
|
1238 |
+
"overflow_y": null,
|
1239 |
+
"padding": null,
|
1240 |
+
"right": null,
|
1241 |
+
"top": null,
|
1242 |
+
"visibility": null,
|
1243 |
+
"width": null
|
1244 |
+
}
|
1245 |
+
},
|
1246 |
+
"349b946a72ac46298a95db5e4229a381": {
|
1247 |
+
"model_module": "@jupyter-widgets/controls",
|
1248 |
+
"model_module_version": "1.5.0",
|
1249 |
+
"model_name": "HBoxModel",
|
1250 |
+
"state": {
|
1251 |
+
"_dom_classes": [],
|
1252 |
+
"_model_module": "@jupyter-widgets/controls",
|
1253 |
+
"_model_module_version": "1.5.0",
|
1254 |
+
"_model_name": "HBoxModel",
|
1255 |
+
"_view_count": null,
|
1256 |
+
"_view_module": "@jupyter-widgets/controls",
|
1257 |
+
"_view_module_version": "1.5.0",
|
1258 |
+
"_view_name": "HBoxView",
|
1259 |
+
"box_style": "",
|
1260 |
+
"children": [
|
1261 |
+
"IPY_MODEL_a40f275727b54c9aa04b1fc4fff8a4fc",
|
1262 |
+
"IPY_MODEL_22fad0230fe24a43bdace165ee70558d",
|
1263 |
+
"IPY_MODEL_8efdcd2e9fcc4b8f83a6ed1c39a81b42"
|
1264 |
+
],
|
1265 |
+
"layout": "IPY_MODEL_e005090ce2074654b3bf549d7dfa18bd"
|
1266 |
+
}
|
1267 |
+
},
|
1268 |
+
"37a803b8fec8453e891a2427c328a387": {
|
1269 |
+
"model_module": "@jupyter-widgets/base",
|
1270 |
+
"model_module_version": "1.2.0",
|
1271 |
+
"model_name": "LayoutModel",
|
1272 |
+
"state": {
|
1273 |
+
"_model_module": "@jupyter-widgets/base",
|
1274 |
+
"_model_module_version": "1.2.0",
|
1275 |
+
"_model_name": "LayoutModel",
|
1276 |
+
"_view_count": null,
|
1277 |
+
"_view_module": "@jupyter-widgets/base",
|
1278 |
+
"_view_module_version": "1.2.0",
|
1279 |
+
"_view_name": "LayoutView",
|
1280 |
+
"align_content": null,
|
1281 |
+
"align_items": null,
|
1282 |
+
"align_self": null,
|
1283 |
+
"border": null,
|
1284 |
+
"bottom": null,
|
1285 |
+
"display": null,
|
1286 |
+
"flex": null,
|
1287 |
+
"flex_flow": null,
|
1288 |
+
"grid_area": null,
|
1289 |
+
"grid_auto_columns": null,
|
1290 |
+
"grid_auto_flow": null,
|
1291 |
+
"grid_auto_rows": null,
|
1292 |
+
"grid_column": null,
|
1293 |
+
"grid_gap": null,
|
1294 |
+
"grid_row": null,
|
1295 |
+
"grid_template_areas": null,
|
1296 |
+
"grid_template_columns": null,
|
1297 |
+
"grid_template_rows": null,
|
1298 |
+
"height": null,
|
1299 |
+
"justify_content": null,
|
1300 |
+
"justify_items": null,
|
1301 |
+
"left": null,
|
1302 |
+
"margin": null,
|
1303 |
+
"max_height": null,
|
1304 |
+
"max_width": null,
|
1305 |
+
"min_height": null,
|
1306 |
+
"min_width": null,
|
1307 |
+
"object_fit": null,
|
1308 |
+
"object_position": null,
|
1309 |
+
"order": null,
|
1310 |
+
"overflow": null,
|
1311 |
+
"overflow_x": null,
|
1312 |
+
"overflow_y": null,
|
1313 |
+
"padding": null,
|
1314 |
+
"right": null,
|
1315 |
+
"top": null,
|
1316 |
+
"visibility": null,
|
1317 |
+
"width": null
|
1318 |
+
}
|
1319 |
+
},
|
1320 |
+
"38c99e6e3f454d5ba33d4464fefa82c4": {
|
1321 |
+
"model_module": "@jupyter-widgets/base",
|
1322 |
+
"model_module_version": "1.2.0",
|
1323 |
+
"model_name": "LayoutModel",
|
1324 |
+
"state": {
|
1325 |
+
"_model_module": "@jupyter-widgets/base",
|
1326 |
+
"_model_module_version": "1.2.0",
|
1327 |
+
"_model_name": "LayoutModel",
|
1328 |
+
"_view_count": null,
|
1329 |
+
"_view_module": "@jupyter-widgets/base",
|
1330 |
+
"_view_module_version": "1.2.0",
|
1331 |
+
"_view_name": "LayoutView",
|
1332 |
+
"align_content": null,
|
1333 |
+
"align_items": null,
|
1334 |
+
"align_self": null,
|
1335 |
+
"border": null,
|
1336 |
+
"bottom": null,
|
1337 |
+
"display": null,
|
1338 |
+
"flex": null,
|
1339 |
+
"flex_flow": null,
|
1340 |
+
"grid_area": null,
|
1341 |
+
"grid_auto_columns": null,
|
1342 |
+
"grid_auto_flow": null,
|
1343 |
+
"grid_auto_rows": null,
|
1344 |
+
"grid_column": null,
|
1345 |
+
"grid_gap": null,
|
1346 |
+
"grid_row": null,
|
1347 |
+
"grid_template_areas": null,
|
1348 |
+
"grid_template_columns": null,
|
1349 |
+
"grid_template_rows": null,
|
1350 |
+
"height": null,
|
1351 |
+
"justify_content": null,
|
1352 |
+
"justify_items": null,
|
1353 |
+
"left": null,
|
1354 |
+
"margin": null,
|
1355 |
+
"max_height": null,
|
1356 |
+
"max_width": null,
|
1357 |
+
"min_height": null,
|
1358 |
+
"min_width": null,
|
1359 |
+
"object_fit": null,
|
1360 |
+
"object_position": null,
|
1361 |
+
"order": null,
|
1362 |
+
"overflow": null,
|
1363 |
+
"overflow_x": null,
|
1364 |
+
"overflow_y": null,
|
1365 |
+
"padding": null,
|
1366 |
+
"right": null,
|
1367 |
+
"top": null,
|
1368 |
+
"visibility": null,
|
1369 |
+
"width": null
|
1370 |
+
}
|
1371 |
+
},
|
1372 |
+
"3e15b8ca59094602b881a91eba591596": {
|
1373 |
+
"model_module": "@jupyter-widgets/controls",
|
1374 |
+
"model_module_version": "1.5.0",
|
1375 |
+
"model_name": "HTMLModel",
|
1376 |
+
"state": {
|
1377 |
+
"_dom_classes": [],
|
1378 |
+
"_model_module": "@jupyter-widgets/controls",
|
1379 |
+
"_model_module_version": "1.5.0",
|
1380 |
+
"_model_name": "HTMLModel",
|
1381 |
+
"_view_count": null,
|
1382 |
+
"_view_module": "@jupyter-widgets/controls",
|
1383 |
+
"_view_module_version": "1.5.0",
|
1384 |
+
"_view_name": "HTMLView",
|
1385 |
+
"description": "",
|
1386 |
+
"description_tooltip": null,
|
1387 |
+
"layout": "IPY_MODEL_b5c1a43a427145eca43627135e967868",
|
1388 |
+
"placeholder": "",
|
1389 |
+
"style": "IPY_MODEL_42737a9271d8445bb259b42b1d2bf77c",
|
1390 |
+
"value": " 1/1 [00:00<00:00, 31.43it/s]"
|
1391 |
+
}
|
1392 |
+
},
|
1393 |
+
"42737a9271d8445bb259b42b1d2bf77c": {
|
1394 |
+
"model_module": "@jupyter-widgets/controls",
|
1395 |
+
"model_module_version": "1.5.0",
|
1396 |
+
"model_name": "DescriptionStyleModel",
|
1397 |
+
"state": {
|
1398 |
+
"_model_module": "@jupyter-widgets/controls",
|
1399 |
+
"_model_module_version": "1.5.0",
|
1400 |
+
"_model_name": "DescriptionStyleModel",
|
1401 |
+
"_view_count": null,
|
1402 |
+
"_view_module": "@jupyter-widgets/base",
|
1403 |
+
"_view_module_version": "1.2.0",
|
1404 |
+
"_view_name": "StyleView",
|
1405 |
+
"description_width": ""
|
1406 |
+
}
|
1407 |
+
},
|
1408 |
+
"485fb67e13f04f8e92dcebf317d95488": {
|
1409 |
+
"model_module": "@jupyter-widgets/controls",
|
1410 |
+
"model_module_version": "1.5.0",
|
1411 |
+
"model_name": "DescriptionStyleModel",
|
1412 |
+
"state": {
|
1413 |
+
"_model_module": "@jupyter-widgets/controls",
|
1414 |
+
"_model_module_version": "1.5.0",
|
1415 |
+
"_model_name": "DescriptionStyleModel",
|
1416 |
+
"_view_count": null,
|
1417 |
+
"_view_module": "@jupyter-widgets/base",
|
1418 |
+
"_view_module_version": "1.2.0",
|
1419 |
+
"_view_name": "StyleView",
|
1420 |
+
"description_width": ""
|
1421 |
+
}
|
1422 |
+
},
|
1423 |
+
"54d97d65052f415c9986ecf8e447b8a3": {
|
1424 |
+
"model_module": "@jupyter-widgets/controls",
|
1425 |
+
"model_module_version": "1.5.0",
|
1426 |
+
"model_name": "HBoxModel",
|
1427 |
+
"state": {
|
1428 |
+
"_dom_classes": [],
|
1429 |
+
"_model_module": "@jupyter-widgets/controls",
|
1430 |
+
"_model_module_version": "1.5.0",
|
1431 |
+
"_model_name": "HBoxModel",
|
1432 |
+
"_view_count": null,
|
1433 |
+
"_view_module": "@jupyter-widgets/controls",
|
1434 |
+
"_view_module_version": "1.5.0",
|
1435 |
+
"_view_name": "HBoxView",
|
1436 |
+
"box_style": "",
|
1437 |
+
"children": [
|
1438 |
+
"IPY_MODEL_067ebf5a471e4546bc631f290411a664",
|
1439 |
+
"IPY_MODEL_208ccbf20b4d4591afa41b7a28588e7e",
|
1440 |
+
"IPY_MODEL_3e15b8ca59094602b881a91eba591596"
|
1441 |
+
],
|
1442 |
+
"layout": "IPY_MODEL_196e0ec8434747279843840fc4c826f0"
|
1443 |
+
}
|
1444 |
+
},
|
1445 |
+
"63057827544242d9a035c0873bc1d85f": {
|
1446 |
+
"model_module": "@jupyter-widgets/controls",
|
1447 |
+
"model_module_version": "1.5.0",
|
1448 |
+
"model_name": "ProgressStyleModel",
|
1449 |
+
"state": {
|
1450 |
+
"_model_module": "@jupyter-widgets/controls",
|
1451 |
+
"_model_module_version": "1.5.0",
|
1452 |
+
"_model_name": "ProgressStyleModel",
|
1453 |
+
"_view_count": null,
|
1454 |
+
"_view_module": "@jupyter-widgets/base",
|
1455 |
+
"_view_module_version": "1.2.0",
|
1456 |
+
"_view_name": "StyleView",
|
1457 |
+
"bar_color": null,
|
1458 |
+
"description_width": ""
|
1459 |
+
}
|
1460 |
+
},
|
1461 |
+
"6385ed14895f414c8eda670301ebead9": {
|
1462 |
+
"model_module": "@jupyter-widgets/base",
|
1463 |
+
"model_module_version": "1.2.0",
|
1464 |
+
"model_name": "LayoutModel",
|
1465 |
+
"state": {
|
1466 |
+
"_model_module": "@jupyter-widgets/base",
|
1467 |
+
"_model_module_version": "1.2.0",
|
1468 |
+
"_model_name": "LayoutModel",
|
1469 |
+
"_view_count": null,
|
1470 |
+
"_view_module": "@jupyter-widgets/base",
|
1471 |
+
"_view_module_version": "1.2.0",
|
1472 |
+
"_view_name": "LayoutView",
|
1473 |
+
"align_content": null,
|
1474 |
+
"align_items": null,
|
1475 |
+
"align_self": null,
|
1476 |
+
"border": null,
|
1477 |
+
"bottom": null,
|
1478 |
+
"display": null,
|
1479 |
+
"flex": null,
|
1480 |
+
"flex_flow": null,
|
1481 |
+
"grid_area": null,
|
1482 |
+
"grid_auto_columns": null,
|
1483 |
+
"grid_auto_flow": null,
|
1484 |
+
"grid_auto_rows": null,
|
1485 |
+
"grid_column": null,
|
1486 |
+
"grid_gap": null,
|
1487 |
+
"grid_row": null,
|
1488 |
+
"grid_template_areas": null,
|
1489 |
+
"grid_template_columns": null,
|
1490 |
+
"grid_template_rows": null,
|
1491 |
+
"height": null,
|
1492 |
+
"justify_content": null,
|
1493 |
+
"justify_items": null,
|
1494 |
+
"left": null,
|
1495 |
+
"margin": null,
|
1496 |
+
"max_height": null,
|
1497 |
+
"max_width": null,
|
1498 |
+
"min_height": null,
|
1499 |
+
"min_width": null,
|
1500 |
+
"object_fit": null,
|
1501 |
+
"object_position": null,
|
1502 |
+
"order": null,
|
1503 |
+
"overflow": null,
|
1504 |
+
"overflow_x": null,
|
1505 |
+
"overflow_y": null,
|
1506 |
+
"padding": null,
|
1507 |
+
"right": null,
|
1508 |
+
"top": null,
|
1509 |
+
"visibility": null,
|
1510 |
+
"width": null
|
1511 |
+
}
|
1512 |
+
},
|
1513 |
+
"68e7d3bbc6f8420193c45055c39c333d": {
|
1514 |
+
"model_module": "@jupyter-widgets/controls",
|
1515 |
+
"model_module_version": "1.5.0",
|
1516 |
+
"model_name": "HBoxModel",
|
1517 |
+
"state": {
|
1518 |
+
"_dom_classes": [],
|
1519 |
+
"_model_module": "@jupyter-widgets/controls",
|
1520 |
+
"_model_module_version": "1.5.0",
|
1521 |
+
"_model_name": "HBoxModel",
|
1522 |
+
"_view_count": null,
|
1523 |
+
"_view_module": "@jupyter-widgets/controls",
|
1524 |
+
"_view_module_version": "1.5.0",
|
1525 |
+
"_view_name": "HBoxView",
|
1526 |
+
"box_style": "",
|
1527 |
+
"children": [
|
1528 |
+
"IPY_MODEL_6bfe3ed1a59b4ecfaa566a88e58f5b9f",
|
1529 |
+
"IPY_MODEL_be3d90e349d14079874c730f0f273cc1",
|
1530 |
+
"IPY_MODEL_80639985213d47dcb3a3681dc98dfeed"
|
1531 |
+
],
|
1532 |
+
"layout": "IPY_MODEL_29f34d4ed85f45b1bbec6d7f8d1145e6"
|
1533 |
+
}
|
1534 |
+
},
|
1535 |
+
"6bfe3ed1a59b4ecfaa566a88e58f5b9f": {
|
1536 |
+
"model_module": "@jupyter-widgets/controls",
|
1537 |
+
"model_module_version": "1.5.0",
|
1538 |
+
"model_name": "HTMLModel",
|
1539 |
+
"state": {
|
1540 |
+
"_dom_classes": [],
|
1541 |
+
"_model_module": "@jupyter-widgets/controls",
|
1542 |
+
"_model_module_version": "1.5.0",
|
1543 |
+
"_model_name": "HTMLModel",
|
1544 |
+
"_view_count": null,
|
1545 |
+
"_view_module": "@jupyter-widgets/controls",
|
1546 |
+
"_view_module_version": "1.5.0",
|
1547 |
+
"_view_name": "HTMLView",
|
1548 |
+
"description": "",
|
1549 |
+
"description_tooltip": null,
|
1550 |
+
"layout": "IPY_MODEL_37a803b8fec8453e891a2427c328a387",
|
1551 |
+
"placeholder": "",
|
1552 |
+
"style": "IPY_MODEL_c052f02649bd40d8a60ea201c41be2f6",
|
1553 |
+
"value": "Generating train split: "
|
1554 |
+
}
|
1555 |
+
},
|
1556 |
+
"71089a885db64054b54e269b4e96c242": {
|
1557 |
+
"model_module": "@jupyter-widgets/controls",
|
1558 |
+
"model_module_version": "1.5.0",
|
1559 |
+
"model_name": "HBoxModel",
|
1560 |
+
"state": {
|
1561 |
+
"_dom_classes": [],
|
1562 |
+
"_model_module": "@jupyter-widgets/controls",
|
1563 |
+
"_model_module_version": "1.5.0",
|
1564 |
+
"_model_name": "HBoxModel",
|
1565 |
+
"_view_count": null,
|
1566 |
+
"_view_module": "@jupyter-widgets/controls",
|
1567 |
+
"_view_module_version": "1.5.0",
|
1568 |
+
"_view_name": "HBoxView",
|
1569 |
+
"box_style": "",
|
1570 |
+
"children": [
|
1571 |
+
"IPY_MODEL_af2258a6b3884cf292819159088442a5",
|
1572 |
+
"IPY_MODEL_b7f44b7f635f4cf887c5794533737428",
|
1573 |
+
"IPY_MODEL_d397ee73099c45d69c53be2d6048bf9c"
|
1574 |
+
],
|
1575 |
+
"layout": "IPY_MODEL_96f1acd888b145149358cbeb771c634c"
|
1576 |
+
}
|
1577 |
+
},
|
1578 |
+
"77a1067871e4496893946bf485cec8af": {
|
1579 |
+
"model_module": "@jupyter-widgets/controls",
|
1580 |
+
"model_module_version": "1.5.0",
|
1581 |
+
"model_name": "ProgressStyleModel",
|
1582 |
+
"state": {
|
1583 |
+
"_model_module": "@jupyter-widgets/controls",
|
1584 |
+
"_model_module_version": "1.5.0",
|
1585 |
+
"_model_name": "ProgressStyleModel",
|
1586 |
+
"_view_count": null,
|
1587 |
+
"_view_module": "@jupyter-widgets/base",
|
1588 |
+
"_view_module_version": "1.2.0",
|
1589 |
+
"_view_name": "StyleView",
|
1590 |
+
"bar_color": null,
|
1591 |
+
"description_width": ""
|
1592 |
+
}
|
1593 |
+
},
|
1594 |
+
"7dae960d1bb54f75914569fbdd45ef6c": {
|
1595 |
+
"model_module": "@jupyter-widgets/controls",
|
1596 |
+
"model_module_version": "1.5.0",
|
1597 |
+
"model_name": "ProgressStyleModel",
|
1598 |
+
"state": {
|
1599 |
+
"_model_module": "@jupyter-widgets/controls",
|
1600 |
+
"_model_module_version": "1.5.0",
|
1601 |
+
"_model_name": "ProgressStyleModel",
|
1602 |
+
"_view_count": null,
|
1603 |
+
"_view_module": "@jupyter-widgets/base",
|
1604 |
+
"_view_module_version": "1.2.0",
|
1605 |
+
"_view_name": "StyleView",
|
1606 |
+
"bar_color": null,
|
1607 |
+
"description_width": ""
|
1608 |
+
}
|
1609 |
+
},
|
1610 |
+
"80639985213d47dcb3a3681dc98dfeed": {
|
1611 |
+
"model_module": "@jupyter-widgets/controls",
|
1612 |
+
"model_module_version": "1.5.0",
|
1613 |
+
"model_name": "HTMLModel",
|
1614 |
+
"state": {
|
1615 |
+
"_dom_classes": [],
|
1616 |
+
"_model_module": "@jupyter-widgets/controls",
|
1617 |
+
"_model_module_version": "1.5.0",
|
1618 |
+
"_model_name": "HTMLModel",
|
1619 |
+
"_view_count": null,
|
1620 |
+
"_view_module": "@jupyter-widgets/controls",
|
1621 |
+
"_view_module_version": "1.5.0",
|
1622 |
+
"_view_name": "HTMLView",
|
1623 |
+
"description": "",
|
1624 |
+
"description_tooltip": null,
|
1625 |
+
"layout": "IPY_MODEL_0246b46f672247dab14d0ddd0c0a25ec",
|
1626 |
+
"placeholder": "",
|
1627 |
+
"style": "IPY_MODEL_1d07551dc3b240da92032bcdc69fd796",
|
1628 |
+
"value": " 52002/0 [00:00<00:00, 160684.66 examples/s]"
|
1629 |
+
}
|
1630 |
+
},
|
1631 |
+
"80647814a92d48718aaef5be6d874ced": {
|
1632 |
+
"model_module": "@jupyter-widgets/base",
|
1633 |
+
"model_module_version": "1.2.0",
|
1634 |
+
"model_name": "LayoutModel",
|
1635 |
+
"state": {
|
1636 |
+
"_model_module": "@jupyter-widgets/base",
|
1637 |
+
"_model_module_version": "1.2.0",
|
1638 |
+
"_model_name": "LayoutModel",
|
1639 |
+
"_view_count": null,
|
1640 |
+
"_view_module": "@jupyter-widgets/base",
|
1641 |
+
"_view_module_version": "1.2.0",
|
1642 |
+
"_view_name": "LayoutView",
|
1643 |
+
"align_content": null,
|
1644 |
+
"align_items": null,
|
1645 |
+
"align_self": null,
|
1646 |
+
"border": null,
|
1647 |
+
"bottom": null,
|
1648 |
+
"display": null,
|
1649 |
+
"flex": null,
|
1650 |
+
"flex_flow": null,
|
1651 |
+
"grid_area": null,
|
1652 |
+
"grid_auto_columns": null,
|
1653 |
+
"grid_auto_flow": null,
|
1654 |
+
"grid_auto_rows": null,
|
1655 |
+
"grid_column": null,
|
1656 |
+
"grid_gap": null,
|
1657 |
+
"grid_row": null,
|
1658 |
+
"grid_template_areas": null,
|
1659 |
+
"grid_template_columns": null,
|
1660 |
+
"grid_template_rows": null,
|
1661 |
+
"height": null,
|
1662 |
+
"justify_content": null,
|
1663 |
+
"justify_items": null,
|
1664 |
+
"left": null,
|
1665 |
+
"margin": null,
|
1666 |
+
"max_height": null,
|
1667 |
+
"max_width": null,
|
1668 |
+
"min_height": null,
|
1669 |
+
"min_width": null,
|
1670 |
+
"object_fit": null,
|
1671 |
+
"object_position": null,
|
1672 |
+
"order": null,
|
1673 |
+
"overflow": null,
|
1674 |
+
"overflow_x": null,
|
1675 |
+
"overflow_y": null,
|
1676 |
+
"padding": null,
|
1677 |
+
"right": null,
|
1678 |
+
"top": null,
|
1679 |
+
"visibility": null,
|
1680 |
+
"width": null
|
1681 |
+
}
|
1682 |
+
},
|
1683 |
+
"879964fd922048e7a5957b3b2d2e11ad": {
|
1684 |
+
"model_module": "@jupyter-widgets/controls",
|
1685 |
+
"model_module_version": "1.5.0",
|
1686 |
+
"model_name": "HBoxModel",
|
1687 |
+
"state": {
|
1688 |
+
"_dom_classes": [],
|
1689 |
+
"_model_module": "@jupyter-widgets/controls",
|
1690 |
+
"_model_module_version": "1.5.0",
|
1691 |
+
"_model_name": "HBoxModel",
|
1692 |
+
"_view_count": null,
|
1693 |
+
"_view_module": "@jupyter-widgets/controls",
|
1694 |
+
"_view_module_version": "1.5.0",
|
1695 |
+
"_view_name": "HBoxView",
|
1696 |
+
"box_style": "",
|
1697 |
+
"children": [
|
1698 |
+
"IPY_MODEL_af67777d31c14f5680ca1d851ef6be2a",
|
1699 |
+
"IPY_MODEL_dedd6fd4d918415ebc0ee78fb053ed6a",
|
1700 |
+
"IPY_MODEL_03469a3882de440cb6a8c36b5a4568d6"
|
1701 |
+
],
|
1702 |
+
"layout": "IPY_MODEL_80647814a92d48718aaef5be6d874ced"
|
1703 |
+
}
|
1704 |
+
},
|
1705 |
+
"87b2e58b20094d78a0f46b5c08c563b3": {
|
1706 |
+
"model_module": "@jupyter-widgets/controls",
|
1707 |
+
"model_module_version": "1.5.0",
|
1708 |
+
"model_name": "DescriptionStyleModel",
|
1709 |
+
"state": {
|
1710 |
+
"_model_module": "@jupyter-widgets/controls",
|
1711 |
+
"_model_module_version": "1.5.0",
|
1712 |
+
"_model_name": "DescriptionStyleModel",
|
1713 |
+
"_view_count": null,
|
1714 |
+
"_view_module": "@jupyter-widgets/base",
|
1715 |
+
"_view_module_version": "1.2.0",
|
1716 |
+
"_view_name": "StyleView",
|
1717 |
+
"description_width": ""
|
1718 |
+
}
|
1719 |
+
},
|
1720 |
+
"8efdcd2e9fcc4b8f83a6ed1c39a81b42": {
|
1721 |
+
"model_module": "@jupyter-widgets/controls",
|
1722 |
+
"model_module_version": "1.5.0",
|
1723 |
+
"model_name": "HTMLModel",
|
1724 |
+
"state": {
|
1725 |
+
"_dom_classes": [],
|
1726 |
+
"_model_module": "@jupyter-widgets/controls",
|
1727 |
+
"_model_module_version": "1.5.0",
|
1728 |
+
"_model_name": "HTMLModel",
|
1729 |
+
"_view_count": null,
|
1730 |
+
"_view_module": "@jupyter-widgets/controls",
|
1731 |
+
"_view_module_version": "1.5.0",
|
1732 |
+
"_view_name": "HTMLView",
|
1733 |
+
"description": "",
|
1734 |
+
"description_tooltip": null,
|
1735 |
+
"layout": "IPY_MODEL_fad3fdc1097244a391cc7d85f11def68",
|
1736 |
+
"placeholder": "",
|
1737 |
+
"style": "IPY_MODEL_db26bb3f65bb42a7a5e0b46123f165d6",
|
1738 |
+
"value": " 7.47k/7.47k [00:00<00:00, 150kB/s]"
|
1739 |
+
}
|
1740 |
+
},
|
1741 |
+
"96f1acd888b145149358cbeb771c634c": {
|
1742 |
+
"model_module": "@jupyter-widgets/base",
|
1743 |
+
"model_module_version": "1.2.0",
|
1744 |
+
"model_name": "LayoutModel",
|
1745 |
+
"state": {
|
1746 |
+
"_model_module": "@jupyter-widgets/base",
|
1747 |
+
"_model_module_version": "1.2.0",
|
1748 |
+
"_model_name": "LayoutModel",
|
1749 |
+
"_view_count": null,
|
1750 |
+
"_view_module": "@jupyter-widgets/base",
|
1751 |
+
"_view_module_version": "1.2.0",
|
1752 |
+
"_view_name": "LayoutView",
|
1753 |
+
"align_content": null,
|
1754 |
+
"align_items": null,
|
1755 |
+
"align_self": null,
|
1756 |
+
"border": null,
|
1757 |
+
"bottom": null,
|
1758 |
+
"display": null,
|
1759 |
+
"flex": null,
|
1760 |
+
"flex_flow": null,
|
1761 |
+
"grid_area": null,
|
1762 |
+
"grid_auto_columns": null,
|
1763 |
+
"grid_auto_flow": null,
|
1764 |
+
"grid_auto_rows": null,
|
1765 |
+
"grid_column": null,
|
1766 |
+
"grid_gap": null,
|
1767 |
+
"grid_row": null,
|
1768 |
+
"grid_template_areas": null,
|
1769 |
+
"grid_template_columns": null,
|
1770 |
+
"grid_template_rows": null,
|
1771 |
+
"height": null,
|
1772 |
+
"justify_content": null,
|
1773 |
+
"justify_items": null,
|
1774 |
+
"left": null,
|
1775 |
+
"margin": null,
|
1776 |
+
"max_height": null,
|
1777 |
+
"max_width": null,
|
1778 |
+
"min_height": null,
|
1779 |
+
"min_width": null,
|
1780 |
+
"object_fit": null,
|
1781 |
+
"object_position": null,
|
1782 |
+
"order": null,
|
1783 |
+
"overflow": null,
|
1784 |
+
"overflow_x": null,
|
1785 |
+
"overflow_y": null,
|
1786 |
+
"padding": null,
|
1787 |
+
"right": null,
|
1788 |
+
"top": null,
|
1789 |
+
"visibility": null,
|
1790 |
+
"width": null
|
1791 |
+
}
|
1792 |
+
},
|
1793 |
+
"a29d6df7874144f888fa88c52daf6ac9": {
|
1794 |
+
"model_module": "@jupyter-widgets/base",
|
1795 |
+
"model_module_version": "1.2.0",
|
1796 |
+
"model_name": "LayoutModel",
|
1797 |
+
"state": {
|
1798 |
+
"_model_module": "@jupyter-widgets/base",
|
1799 |
+
"_model_module_version": "1.2.0",
|
1800 |
+
"_model_name": "LayoutModel",
|
1801 |
+
"_view_count": null,
|
1802 |
+
"_view_module": "@jupyter-widgets/base",
|
1803 |
+
"_view_module_version": "1.2.0",
|
1804 |
+
"_view_name": "LayoutView",
|
1805 |
+
"align_content": null,
|
1806 |
+
"align_items": null,
|
1807 |
+
"align_self": null,
|
1808 |
+
"border": null,
|
1809 |
+
"bottom": null,
|
1810 |
+
"display": null,
|
1811 |
+
"flex": null,
|
1812 |
+
"flex_flow": null,
|
1813 |
+
"grid_area": null,
|
1814 |
+
"grid_auto_columns": null,
|
1815 |
+
"grid_auto_flow": null,
|
1816 |
+
"grid_auto_rows": null,
|
1817 |
+
"grid_column": null,
|
1818 |
+
"grid_gap": null,
|
1819 |
+
"grid_row": null,
|
1820 |
+
"grid_template_areas": null,
|
1821 |
+
"grid_template_columns": null,
|
1822 |
+
"grid_template_rows": null,
|
1823 |
+
"height": null,
|
1824 |
+
"justify_content": null,
|
1825 |
+
"justify_items": null,
|
1826 |
+
"left": null,
|
1827 |
+
"margin": null,
|
1828 |
+
"max_height": null,
|
1829 |
+
"max_width": null,
|
1830 |
+
"min_height": null,
|
1831 |
+
"min_width": null,
|
1832 |
+
"object_fit": null,
|
1833 |
+
"object_position": null,
|
1834 |
+
"order": null,
|
1835 |
+
"overflow": null,
|
1836 |
+
"overflow_x": null,
|
1837 |
+
"overflow_y": null,
|
1838 |
+
"padding": null,
|
1839 |
+
"right": null,
|
1840 |
+
"top": null,
|
1841 |
+
"visibility": null,
|
1842 |
+
"width": null
|
1843 |
+
}
|
1844 |
+
},
|
1845 |
+
"a40f275727b54c9aa04b1fc4fff8a4fc": {
|
1846 |
+
"model_module": "@jupyter-widgets/controls",
|
1847 |
+
"model_module_version": "1.5.0",
|
1848 |
+
"model_name": "HTMLModel",
|
1849 |
+
"state": {
|
1850 |
+
"_dom_classes": [],
|
1851 |
+
"_model_module": "@jupyter-widgets/controls",
|
1852 |
+
"_model_module_version": "1.5.0",
|
1853 |
+
"_model_name": "HTMLModel",
|
1854 |
+
"_view_count": null,
|
1855 |
+
"_view_module": "@jupyter-widgets/controls",
|
1856 |
+
"_view_module_version": "1.5.0",
|
1857 |
+
"_view_name": "HTMLView",
|
1858 |
+
"description": "",
|
1859 |
+
"description_tooltip": null,
|
1860 |
+
"layout": "IPY_MODEL_f3c42fd1fd2f4bc29bf462890b882bb2",
|
1861 |
+
"placeholder": "",
|
1862 |
+
"style": "IPY_MODEL_87b2e58b20094d78a0f46b5c08c563b3",
|
1863 |
+
"value": "Downloading readme: 100%"
|
1864 |
+
}
|
1865 |
+
},
|
1866 |
+
"a9641d5441d24f4c901c86e6d5650c4e": {
|
1867 |
+
"model_module": "@jupyter-widgets/base",
|
1868 |
+
"model_module_version": "1.2.0",
|
1869 |
+
"model_name": "LayoutModel",
|
1870 |
+
"state": {
|
1871 |
+
"_model_module": "@jupyter-widgets/base",
|
1872 |
+
"_model_module_version": "1.2.0",
|
1873 |
+
"_model_name": "LayoutModel",
|
1874 |
+
"_view_count": null,
|
1875 |
+
"_view_module": "@jupyter-widgets/base",
|
1876 |
+
"_view_module_version": "1.2.0",
|
1877 |
+
"_view_name": "LayoutView",
|
1878 |
+
"align_content": null,
|
1879 |
+
"align_items": null,
|
1880 |
+
"align_self": null,
|
1881 |
+
"border": null,
|
1882 |
+
"bottom": null,
|
1883 |
+
"display": null,
|
1884 |
+
"flex": null,
|
1885 |
+
"flex_flow": null,
|
1886 |
+
"grid_area": null,
|
1887 |
+
"grid_auto_columns": null,
|
1888 |
+
"grid_auto_flow": null,
|
1889 |
+
"grid_auto_rows": null,
|
1890 |
+
"grid_column": null,
|
1891 |
+
"grid_gap": null,
|
1892 |
+
"grid_row": null,
|
1893 |
+
"grid_template_areas": null,
|
1894 |
+
"grid_template_columns": null,
|
1895 |
+
"grid_template_rows": null,
|
1896 |
+
"height": null,
|
1897 |
+
"justify_content": null,
|
1898 |
+
"justify_items": null,
|
1899 |
+
"left": null,
|
1900 |
+
"margin": null,
|
1901 |
+
"max_height": null,
|
1902 |
+
"max_width": null,
|
1903 |
+
"min_height": null,
|
1904 |
+
"min_width": null,
|
1905 |
+
"object_fit": null,
|
1906 |
+
"object_position": null,
|
1907 |
+
"order": null,
|
1908 |
+
"overflow": null,
|
1909 |
+
"overflow_x": null,
|
1910 |
+
"overflow_y": null,
|
1911 |
+
"padding": null,
|
1912 |
+
"right": null,
|
1913 |
+
"top": null,
|
1914 |
+
"visibility": null,
|
1915 |
+
"width": "20px"
|
1916 |
+
}
|
1917 |
+
},
|
1918 |
+
"af2258a6b3884cf292819159088442a5": {
|
1919 |
+
"model_module": "@jupyter-widgets/controls",
|
1920 |
+
"model_module_version": "1.5.0",
|
1921 |
+
"model_name": "HTMLModel",
|
1922 |
+
"state": {
|
1923 |
+
"_dom_classes": [],
|
1924 |
+
"_model_module": "@jupyter-widgets/controls",
|
1925 |
+
"_model_module_version": "1.5.0",
|
1926 |
+
"_model_name": "HTMLModel",
|
1927 |
+
"_view_count": null,
|
1928 |
+
"_view_module": "@jupyter-widgets/controls",
|
1929 |
+
"_view_module_version": "1.5.0",
|
1930 |
+
"_view_name": "HTMLView",
|
1931 |
+
"description": "",
|
1932 |
+
"description_tooltip": null,
|
1933 |
+
"layout": "IPY_MODEL_e4dc8b48a318447cb8ebd7b20618bcb3",
|
1934 |
+
"placeholder": "",
|
1935 |
+
"style": "IPY_MODEL_485fb67e13f04f8e92dcebf317d95488",
|
1936 |
+
"value": "Downloading data: 100%"
|
1937 |
+
}
|
1938 |
+
},
|
1939 |
+
"af67777d31c14f5680ca1d851ef6be2a": {
|
1940 |
+
"model_module": "@jupyter-widgets/controls",
|
1941 |
+
"model_module_version": "1.5.0",
|
1942 |
+
"model_name": "HTMLModel",
|
1943 |
+
"state": {
|
1944 |
+
"_dom_classes": [],
|
1945 |
+
"_model_module": "@jupyter-widgets/controls",
|
1946 |
+
"_model_module_version": "1.5.0",
|
1947 |
+
"_model_name": "HTMLModel",
|
1948 |
+
"_view_count": null,
|
1949 |
+
"_view_module": "@jupyter-widgets/controls",
|
1950 |
+
"_view_module_version": "1.5.0",
|
1951 |
+
"_view_name": "HTMLView",
|
1952 |
+
"description": "",
|
1953 |
+
"description_tooltip": null,
|
1954 |
+
"layout": "IPY_MODEL_1eb94330421f4fa2bca65b82bedcbfef",
|
1955 |
+
"placeholder": "",
|
1956 |
+
"style": "IPY_MODEL_cbea2a9da24f48a59214cee13cc6b153",
|
1957 |
+
"value": "Downloading data files: 100%"
|
1958 |
+
}
|
1959 |
+
},
|
1960 |
+
"b5c1a43a427145eca43627135e967868": {
|
1961 |
+
"model_module": "@jupyter-widgets/base",
|
1962 |
+
"model_module_version": "1.2.0",
|
1963 |
+
"model_name": "LayoutModel",
|
1964 |
+
"state": {
|
1965 |
+
"_model_module": "@jupyter-widgets/base",
|
1966 |
+
"_model_module_version": "1.2.0",
|
1967 |
+
"_model_name": "LayoutModel",
|
1968 |
+
"_view_count": null,
|
1969 |
+
"_view_module": "@jupyter-widgets/base",
|
1970 |
+
"_view_module_version": "1.2.0",
|
1971 |
+
"_view_name": "LayoutView",
|
1972 |
+
"align_content": null,
|
1973 |
+
"align_items": null,
|
1974 |
+
"align_self": null,
|
1975 |
+
"border": null,
|
1976 |
+
"bottom": null,
|
1977 |
+
"display": null,
|
1978 |
+
"flex": null,
|
1979 |
+
"flex_flow": null,
|
1980 |
+
"grid_area": null,
|
1981 |
+
"grid_auto_columns": null,
|
1982 |
+
"grid_auto_flow": null,
|
1983 |
+
"grid_auto_rows": null,
|
1984 |
+
"grid_column": null,
|
1985 |
+
"grid_gap": null,
|
1986 |
+
"grid_row": null,
|
1987 |
+
"grid_template_areas": null,
|
1988 |
+
"grid_template_columns": null,
|
1989 |
+
"grid_template_rows": null,
|
1990 |
+
"height": null,
|
1991 |
+
"justify_content": null,
|
1992 |
+
"justify_items": null,
|
1993 |
+
"left": null,
|
1994 |
+
"margin": null,
|
1995 |
+
"max_height": null,
|
1996 |
+
"max_width": null,
|
1997 |
+
"min_height": null,
|
1998 |
+
"min_width": null,
|
1999 |
+
"object_fit": null,
|
2000 |
+
"object_position": null,
|
2001 |
+
"order": null,
|
2002 |
+
"overflow": null,
|
2003 |
+
"overflow_x": null,
|
2004 |
+
"overflow_y": null,
|
2005 |
+
"padding": null,
|
2006 |
+
"right": null,
|
2007 |
+
"top": null,
|
2008 |
+
"visibility": null,
|
2009 |
+
"width": null
|
2010 |
+
}
|
2011 |
+
},
|
2012 |
+
"b7f44b7f635f4cf887c5794533737428": {
|
2013 |
+
"model_module": "@jupyter-widgets/controls",
|
2014 |
+
"model_module_version": "1.5.0",
|
2015 |
+
"model_name": "FloatProgressModel",
|
2016 |
+
"state": {
|
2017 |
+
"_dom_classes": [],
|
2018 |
+
"_model_module": "@jupyter-widgets/controls",
|
2019 |
+
"_model_module_version": "1.5.0",
|
2020 |
+
"_model_name": "FloatProgressModel",
|
2021 |
+
"_view_count": null,
|
2022 |
+
"_view_module": "@jupyter-widgets/controls",
|
2023 |
+
"_view_module_version": "1.5.0",
|
2024 |
+
"_view_name": "ProgressView",
|
2025 |
+
"bar_style": "success",
|
2026 |
+
"description": "",
|
2027 |
+
"description_tooltip": null,
|
2028 |
+
"layout": "IPY_MODEL_a29d6df7874144f888fa88c52daf6ac9",
|
2029 |
+
"max": 24246638,
|
2030 |
+
"min": 0,
|
2031 |
+
"orientation": "horizontal",
|
2032 |
+
"style": "IPY_MODEL_77a1067871e4496893946bf485cec8af",
|
2033 |
+
"value": 24246638
|
2034 |
+
}
|
2035 |
+
},
|
2036 |
+
"be3d90e349d14079874c730f0f273cc1": {
|
2037 |
+
"model_module": "@jupyter-widgets/controls",
|
2038 |
+
"model_module_version": "1.5.0",
|
2039 |
+
"model_name": "FloatProgressModel",
|
2040 |
+
"state": {
|
2041 |
+
"_dom_classes": [],
|
2042 |
+
"_model_module": "@jupyter-widgets/controls",
|
2043 |
+
"_model_module_version": "1.5.0",
|
2044 |
+
"_model_name": "FloatProgressModel",
|
2045 |
+
"_view_count": null,
|
2046 |
+
"_view_module": "@jupyter-widgets/controls",
|
2047 |
+
"_view_module_version": "1.5.0",
|
2048 |
+
"_view_name": "ProgressView",
|
2049 |
+
"bar_style": "success",
|
2050 |
+
"description": "",
|
2051 |
+
"description_tooltip": null,
|
2052 |
+
"layout": "IPY_MODEL_a9641d5441d24f4c901c86e6d5650c4e",
|
2053 |
+
"max": 1,
|
2054 |
+
"min": 0,
|
2055 |
+
"orientation": "horizontal",
|
2056 |
+
"style": "IPY_MODEL_1c295b1b2f374acfb7f2b7ddcfe3b960",
|
2057 |
+
"value": 1
|
2058 |
+
}
|
2059 |
+
},
|
2060 |
+
"c052f02649bd40d8a60ea201c41be2f6": {
|
2061 |
+
"model_module": "@jupyter-widgets/controls",
|
2062 |
+
"model_module_version": "1.5.0",
|
2063 |
+
"model_name": "DescriptionStyleModel",
|
2064 |
+
"state": {
|
2065 |
+
"_model_module": "@jupyter-widgets/controls",
|
2066 |
+
"_model_module_version": "1.5.0",
|
2067 |
+
"_model_name": "DescriptionStyleModel",
|
2068 |
+
"_view_count": null,
|
2069 |
+
"_view_module": "@jupyter-widgets/base",
|
2070 |
+
"_view_module_version": "1.2.0",
|
2071 |
+
"_view_name": "StyleView",
|
2072 |
+
"description_width": ""
|
2073 |
+
}
|
2074 |
+
},
|
2075 |
+
"c241b2d6899a4a62861d7e839091c2f7": {
|
2076 |
+
"model_module": "@jupyter-widgets/base",
|
2077 |
+
"model_module_version": "1.2.0",
|
2078 |
+
"model_name": "LayoutModel",
|
2079 |
+
"state": {
|
2080 |
+
"_model_module": "@jupyter-widgets/base",
|
2081 |
+
"_model_module_version": "1.2.0",
|
2082 |
+
"_model_name": "LayoutModel",
|
2083 |
+
"_view_count": null,
|
2084 |
+
"_view_module": "@jupyter-widgets/base",
|
2085 |
+
"_view_module_version": "1.2.0",
|
2086 |
+
"_view_name": "LayoutView",
|
2087 |
+
"align_content": null,
|
2088 |
+
"align_items": null,
|
2089 |
+
"align_self": null,
|
2090 |
+
"border": null,
|
2091 |
+
"bottom": null,
|
2092 |
+
"display": null,
|
2093 |
+
"flex": null,
|
2094 |
+
"flex_flow": null,
|
2095 |
+
"grid_area": null,
|
2096 |
+
"grid_auto_columns": null,
|
2097 |
+
"grid_auto_flow": null,
|
2098 |
+
"grid_auto_rows": null,
|
2099 |
+
"grid_column": null,
|
2100 |
+
"grid_gap": null,
|
2101 |
+
"grid_row": null,
|
2102 |
+
"grid_template_areas": null,
|
2103 |
+
"grid_template_columns": null,
|
2104 |
+
"grid_template_rows": null,
|
2105 |
+
"height": null,
|
2106 |
+
"justify_content": null,
|
2107 |
+
"justify_items": null,
|
2108 |
+
"left": null,
|
2109 |
+
"margin": null,
|
2110 |
+
"max_height": null,
|
2111 |
+
"max_width": null,
|
2112 |
+
"min_height": null,
|
2113 |
+
"min_width": null,
|
2114 |
+
"object_fit": null,
|
2115 |
+
"object_position": null,
|
2116 |
+
"order": null,
|
2117 |
+
"overflow": null,
|
2118 |
+
"overflow_x": null,
|
2119 |
+
"overflow_y": null,
|
2120 |
+
"padding": null,
|
2121 |
+
"right": null,
|
2122 |
+
"top": null,
|
2123 |
+
"visibility": null,
|
2124 |
+
"width": null
|
2125 |
+
}
|
2126 |
+
},
|
2127 |
+
"c59da8b062a84afebfad5da6ef5a496a": {
|
2128 |
+
"model_module": "@jupyter-widgets/controls",
|
2129 |
+
"model_module_version": "1.5.0",
|
2130 |
+
"model_name": "DescriptionStyleModel",
|
2131 |
+
"state": {
|
2132 |
+
"_model_module": "@jupyter-widgets/controls",
|
2133 |
+
"_model_module_version": "1.5.0",
|
2134 |
+
"_model_name": "DescriptionStyleModel",
|
2135 |
+
"_view_count": null,
|
2136 |
+
"_view_module": "@jupyter-widgets/base",
|
2137 |
+
"_view_module_version": "1.2.0",
|
2138 |
+
"_view_name": "StyleView",
|
2139 |
+
"description_width": ""
|
2140 |
+
}
|
2141 |
+
},
|
2142 |
+
"cbea2a9da24f48a59214cee13cc6b153": {
|
2143 |
+
"model_module": "@jupyter-widgets/controls",
|
2144 |
+
"model_module_version": "1.5.0",
|
2145 |
+
"model_name": "DescriptionStyleModel",
|
2146 |
+
"state": {
|
2147 |
+
"_model_module": "@jupyter-widgets/controls",
|
2148 |
+
"_model_module_version": "1.5.0",
|
2149 |
+
"_model_name": "DescriptionStyleModel",
|
2150 |
+
"_view_count": null,
|
2151 |
+
"_view_module": "@jupyter-widgets/base",
|
2152 |
+
"_view_module_version": "1.2.0",
|
2153 |
+
"_view_name": "StyleView",
|
2154 |
+
"description_width": ""
|
2155 |
+
}
|
2156 |
+
},
|
2157 |
+
"d1c670a45b0f4befaa0e849ec8646a47": {
|
2158 |
+
"model_module": "@jupyter-widgets/base",
|
2159 |
+
"model_module_version": "1.2.0",
|
2160 |
+
"model_name": "LayoutModel",
|
2161 |
+
"state": {
|
2162 |
+
"_model_module": "@jupyter-widgets/base",
|
2163 |
+
"_model_module_version": "1.2.0",
|
2164 |
+
"_model_name": "LayoutModel",
|
2165 |
+
"_view_count": null,
|
2166 |
+
"_view_module": "@jupyter-widgets/base",
|
2167 |
+
"_view_module_version": "1.2.0",
|
2168 |
+
"_view_name": "LayoutView",
|
2169 |
+
"align_content": null,
|
2170 |
+
"align_items": null,
|
2171 |
+
"align_self": null,
|
2172 |
+
"border": null,
|
2173 |
+
"bottom": null,
|
2174 |
+
"display": null,
|
2175 |
+
"flex": null,
|
2176 |
+
"flex_flow": null,
|
2177 |
+
"grid_area": null,
|
2178 |
+
"grid_auto_columns": null,
|
2179 |
+
"grid_auto_flow": null,
|
2180 |
+
"grid_auto_rows": null,
|
2181 |
+
"grid_column": null,
|
2182 |
+
"grid_gap": null,
|
2183 |
+
"grid_row": null,
|
2184 |
+
"grid_template_areas": null,
|
2185 |
+
"grid_template_columns": null,
|
2186 |
+
"grid_template_rows": null,
|
2187 |
+
"height": null,
|
2188 |
+
"justify_content": null,
|
2189 |
+
"justify_items": null,
|
2190 |
+
"left": null,
|
2191 |
+
"margin": null,
|
2192 |
+
"max_height": null,
|
2193 |
+
"max_width": null,
|
2194 |
+
"min_height": null,
|
2195 |
+
"min_width": null,
|
2196 |
+
"object_fit": null,
|
2197 |
+
"object_position": null,
|
2198 |
+
"order": null,
|
2199 |
+
"overflow": null,
|
2200 |
+
"overflow_x": null,
|
2201 |
+
"overflow_y": null,
|
2202 |
+
"padding": null,
|
2203 |
+
"right": null,
|
2204 |
+
"top": null,
|
2205 |
+
"visibility": null,
|
2206 |
+
"width": null
|
2207 |
+
}
|
2208 |
+
},
|
2209 |
+
"d397ee73099c45d69c53be2d6048bf9c": {
|
2210 |
+
"model_module": "@jupyter-widgets/controls",
|
2211 |
+
"model_module_version": "1.5.0",
|
2212 |
+
"model_name": "HTMLModel",
|
2213 |
+
"state": {
|
2214 |
+
"_dom_classes": [],
|
2215 |
+
"_model_module": "@jupyter-widgets/controls",
|
2216 |
+
"_model_module_version": "1.5.0",
|
2217 |
+
"_model_name": "HTMLModel",
|
2218 |
+
"_view_count": null,
|
2219 |
+
"_view_module": "@jupyter-widgets/controls",
|
2220 |
+
"_view_module_version": "1.5.0",
|
2221 |
+
"_view_name": "HTMLView",
|
2222 |
+
"description": "",
|
2223 |
+
"description_tooltip": null,
|
2224 |
+
"layout": "IPY_MODEL_c241b2d6899a4a62861d7e839091c2f7",
|
2225 |
+
"placeholder": "",
|
2226 |
+
"style": "IPY_MODEL_249766ef96ac467caf7d529c29af60db",
|
2227 |
+
"value": " 24.2M/24.2M [00:00<00:00, 27.7MB/s]"
|
2228 |
+
}
|
2229 |
+
},
|
2230 |
+
"d7708c22d8a34082b80a14302983159e": {
|
2231 |
+
"model_module": "@jupyter-widgets/base",
|
2232 |
+
"model_module_version": "1.2.0",
|
2233 |
+
"model_name": "LayoutModel",
|
2234 |
+
"state": {
|
2235 |
+
"_model_module": "@jupyter-widgets/base",
|
2236 |
+
"_model_module_version": "1.2.0",
|
2237 |
+
"_model_name": "LayoutModel",
|
2238 |
+
"_view_count": null,
|
2239 |
+
"_view_module": "@jupyter-widgets/base",
|
2240 |
+
"_view_module_version": "1.2.0",
|
2241 |
+
"_view_name": "LayoutView",
|
2242 |
+
"align_content": null,
|
2243 |
+
"align_items": null,
|
2244 |
+
"align_self": null,
|
2245 |
+
"border": null,
|
2246 |
+
"bottom": null,
|
2247 |
+
"display": null,
|
2248 |
+
"flex": null,
|
2249 |
+
"flex_flow": null,
|
2250 |
+
"grid_area": null,
|
2251 |
+
"grid_auto_columns": null,
|
2252 |
+
"grid_auto_flow": null,
|
2253 |
+
"grid_auto_rows": null,
|
2254 |
+
"grid_column": null,
|
2255 |
+
"grid_gap": null,
|
2256 |
+
"grid_row": null,
|
2257 |
+
"grid_template_areas": null,
|
2258 |
+
"grid_template_columns": null,
|
2259 |
+
"grid_template_rows": null,
|
2260 |
+
"height": null,
|
2261 |
+
"justify_content": null,
|
2262 |
+
"justify_items": null,
|
2263 |
+
"left": null,
|
2264 |
+
"margin": null,
|
2265 |
+
"max_height": null,
|
2266 |
+
"max_width": null,
|
2267 |
+
"min_height": null,
|
2268 |
+
"min_width": null,
|
2269 |
+
"object_fit": null,
|
2270 |
+
"object_position": null,
|
2271 |
+
"order": null,
|
2272 |
+
"overflow": null,
|
2273 |
+
"overflow_x": null,
|
2274 |
+
"overflow_y": null,
|
2275 |
+
"padding": null,
|
2276 |
+
"right": null,
|
2277 |
+
"top": null,
|
2278 |
+
"visibility": null,
|
2279 |
+
"width": null
|
2280 |
+
}
|
2281 |
+
},
|
2282 |
+
"db26bb3f65bb42a7a5e0b46123f165d6": {
|
2283 |
+
"model_module": "@jupyter-widgets/controls",
|
2284 |
+
"model_module_version": "1.5.0",
|
2285 |
+
"model_name": "DescriptionStyleModel",
|
2286 |
+
"state": {
|
2287 |
+
"_model_module": "@jupyter-widgets/controls",
|
2288 |
+
"_model_module_version": "1.5.0",
|
2289 |
+
"_model_name": "DescriptionStyleModel",
|
2290 |
+
"_view_count": null,
|
2291 |
+
"_view_module": "@jupyter-widgets/base",
|
2292 |
+
"_view_module_version": "1.2.0",
|
2293 |
+
"_view_name": "StyleView",
|
2294 |
+
"description_width": ""
|
2295 |
+
}
|
2296 |
+
},
|
2297 |
+
"dedd6fd4d918415ebc0ee78fb053ed6a": {
|
2298 |
+
"model_module": "@jupyter-widgets/controls",
|
2299 |
+
"model_module_version": "1.5.0",
|
2300 |
+
"model_name": "FloatProgressModel",
|
2301 |
+
"state": {
|
2302 |
+
"_dom_classes": [],
|
2303 |
+
"_model_module": "@jupyter-widgets/controls",
|
2304 |
+
"_model_module_version": "1.5.0",
|
2305 |
+
"_model_name": "FloatProgressModel",
|
2306 |
+
"_view_count": null,
|
2307 |
+
"_view_module": "@jupyter-widgets/controls",
|
2308 |
+
"_view_module_version": "1.5.0",
|
2309 |
+
"_view_name": "ProgressView",
|
2310 |
+
"bar_style": "success",
|
2311 |
+
"description": "",
|
2312 |
+
"description_tooltip": null,
|
2313 |
+
"layout": "IPY_MODEL_d1c670a45b0f4befaa0e849ec8646a47",
|
2314 |
+
"max": 1,
|
2315 |
+
"min": 0,
|
2316 |
+
"orientation": "horizontal",
|
2317 |
+
"style": "IPY_MODEL_7dae960d1bb54f75914569fbdd45ef6c",
|
2318 |
+
"value": 1
|
2319 |
+
}
|
2320 |
+
},
|
2321 |
+
"e005090ce2074654b3bf549d7dfa18bd": {
|
2322 |
+
"model_module": "@jupyter-widgets/base",
|
2323 |
+
"model_module_version": "1.2.0",
|
2324 |
+
"model_name": "LayoutModel",
|
2325 |
+
"state": {
|
2326 |
+
"_model_module": "@jupyter-widgets/base",
|
2327 |
+
"_model_module_version": "1.2.0",
|
2328 |
+
"_model_name": "LayoutModel",
|
2329 |
+
"_view_count": null,
|
2330 |
+
"_view_module": "@jupyter-widgets/base",
|
2331 |
+
"_view_module_version": "1.2.0",
|
2332 |
+
"_view_name": "LayoutView",
|
2333 |
+
"align_content": null,
|
2334 |
+
"align_items": null,
|
2335 |
+
"align_self": null,
|
2336 |
+
"border": null,
|
2337 |
+
"bottom": null,
|
2338 |
+
"display": null,
|
2339 |
+
"flex": null,
|
2340 |
+
"flex_flow": null,
|
2341 |
+
"grid_area": null,
|
2342 |
+
"grid_auto_columns": null,
|
2343 |
+
"grid_auto_flow": null,
|
2344 |
+
"grid_auto_rows": null,
|
2345 |
+
"grid_column": null,
|
2346 |
+
"grid_gap": null,
|
2347 |
+
"grid_row": null,
|
2348 |
+
"grid_template_areas": null,
|
2349 |
+
"grid_template_columns": null,
|
2350 |
+
"grid_template_rows": null,
|
2351 |
+
"height": null,
|
2352 |
+
"justify_content": null,
|
2353 |
+
"justify_items": null,
|
2354 |
+
"left": null,
|
2355 |
+
"margin": null,
|
2356 |
+
"max_height": null,
|
2357 |
+
"max_width": null,
|
2358 |
+
"min_height": null,
|
2359 |
+
"min_width": null,
|
2360 |
+
"object_fit": null,
|
2361 |
+
"object_position": null,
|
2362 |
+
"order": null,
|
2363 |
+
"overflow": null,
|
2364 |
+
"overflow_x": null,
|
2365 |
+
"overflow_y": null,
|
2366 |
+
"padding": null,
|
2367 |
+
"right": null,
|
2368 |
+
"top": null,
|
2369 |
+
"visibility": null,
|
2370 |
+
"width": null
|
2371 |
+
}
|
2372 |
+
},
|
2373 |
+
"e43fe266c77e495b9b422ccaeda2c03a": {
|
2374 |
+
"model_module": "@jupyter-widgets/controls",
|
2375 |
+
"model_module_version": "1.5.0",
|
2376 |
+
"model_name": "ProgressStyleModel",
|
2377 |
+
"state": {
|
2378 |
+
"_model_module": "@jupyter-widgets/controls",
|
2379 |
+
"_model_module_version": "1.5.0",
|
2380 |
+
"_model_name": "ProgressStyleModel",
|
2381 |
+
"_view_count": null,
|
2382 |
+
"_view_module": "@jupyter-widgets/base",
|
2383 |
+
"_view_module_version": "1.2.0",
|
2384 |
+
"_view_name": "StyleView",
|
2385 |
+
"bar_color": null,
|
2386 |
+
"description_width": ""
|
2387 |
+
}
|
2388 |
+
},
|
2389 |
+
"e4dc8b48a318447cb8ebd7b20618bcb3": {
|
2390 |
+
"model_module": "@jupyter-widgets/base",
|
2391 |
+
"model_module_version": "1.2.0",
|
2392 |
+
"model_name": "LayoutModel",
|
2393 |
+
"state": {
|
2394 |
+
"_model_module": "@jupyter-widgets/base",
|
2395 |
+
"_model_module_version": "1.2.0",
|
2396 |
+
"_model_name": "LayoutModel",
|
2397 |
+
"_view_count": null,
|
2398 |
+
"_view_module": "@jupyter-widgets/base",
|
2399 |
+
"_view_module_version": "1.2.0",
|
2400 |
+
"_view_name": "LayoutView",
|
2401 |
+
"align_content": null,
|
2402 |
+
"align_items": null,
|
2403 |
+
"align_self": null,
|
2404 |
+
"border": null,
|
2405 |
+
"bottom": null,
|
2406 |
+
"display": null,
|
2407 |
+
"flex": null,
|
2408 |
+
"flex_flow": null,
|
2409 |
+
"grid_area": null,
|
2410 |
+
"grid_auto_columns": null,
|
2411 |
+
"grid_auto_flow": null,
|
2412 |
+
"grid_auto_rows": null,
|
2413 |
+
"grid_column": null,
|
2414 |
+
"grid_gap": null,
|
2415 |
+
"grid_row": null,
|
2416 |
+
"grid_template_areas": null,
|
2417 |
+
"grid_template_columns": null,
|
2418 |
+
"grid_template_rows": null,
|
2419 |
+
"height": null,
|
2420 |
+
"justify_content": null,
|
2421 |
+
"justify_items": null,
|
2422 |
+
"left": null,
|
2423 |
+
"margin": null,
|
2424 |
+
"max_height": null,
|
2425 |
+
"max_width": null,
|
2426 |
+
"min_height": null,
|
2427 |
+
"min_width": null,
|
2428 |
+
"object_fit": null,
|
2429 |
+
"object_position": null,
|
2430 |
+
"order": null,
|
2431 |
+
"overflow": null,
|
2432 |
+
"overflow_x": null,
|
2433 |
+
"overflow_y": null,
|
2434 |
+
"padding": null,
|
2435 |
+
"right": null,
|
2436 |
+
"top": null,
|
2437 |
+
"visibility": null,
|
2438 |
+
"width": null
|
2439 |
+
}
|
2440 |
+
},
|
2441 |
+
"f3c42fd1fd2f4bc29bf462890b882bb2": {
|
2442 |
+
"model_module": "@jupyter-widgets/base",
|
2443 |
+
"model_module_version": "1.2.0",
|
2444 |
+
"model_name": "LayoutModel",
|
2445 |
+
"state": {
|
2446 |
+
"_model_module": "@jupyter-widgets/base",
|
2447 |
+
"_model_module_version": "1.2.0",
|
2448 |
+
"_model_name": "LayoutModel",
|
2449 |
+
"_view_count": null,
|
2450 |
+
"_view_module": "@jupyter-widgets/base",
|
2451 |
+
"_view_module_version": "1.2.0",
|
2452 |
+
"_view_name": "LayoutView",
|
2453 |
+
"align_content": null,
|
2454 |
+
"align_items": null,
|
2455 |
+
"align_self": null,
|
2456 |
+
"border": null,
|
2457 |
+
"bottom": null,
|
2458 |
+
"display": null,
|
2459 |
+
"flex": null,
|
2460 |
+
"flex_flow": null,
|
2461 |
+
"grid_area": null,
|
2462 |
+
"grid_auto_columns": null,
|
2463 |
+
"grid_auto_flow": null,
|
2464 |
+
"grid_auto_rows": null,
|
2465 |
+
"grid_column": null,
|
2466 |
+
"grid_gap": null,
|
2467 |
+
"grid_row": null,
|
2468 |
+
"grid_template_areas": null,
|
2469 |
+
"grid_template_columns": null,
|
2470 |
+
"grid_template_rows": null,
|
2471 |
+
"height": null,
|
2472 |
+
"justify_content": null,
|
2473 |
+
"justify_items": null,
|
2474 |
+
"left": null,
|
2475 |
+
"margin": null,
|
2476 |
+
"max_height": null,
|
2477 |
+
"max_width": null,
|
2478 |
+
"min_height": null,
|
2479 |
+
"min_width": null,
|
2480 |
+
"object_fit": null,
|
2481 |
+
"object_position": null,
|
2482 |
+
"order": null,
|
2483 |
+
"overflow": null,
|
2484 |
+
"overflow_x": null,
|
2485 |
+
"overflow_y": null,
|
2486 |
+
"padding": null,
|
2487 |
+
"right": null,
|
2488 |
+
"top": null,
|
2489 |
+
"visibility": null,
|
2490 |
+
"width": null
|
2491 |
+
}
|
2492 |
+
},
|
2493 |
+
"f902ed42a30e476a8d508c50fa9fc602": {
|
2494 |
+
"model_module": "@jupyter-widgets/controls",
|
2495 |
+
"model_module_version": "1.5.0",
|
2496 |
+
"model_name": "DescriptionStyleModel",
|
2497 |
+
"state": {
|
2498 |
+
"_model_module": "@jupyter-widgets/controls",
|
2499 |
+
"_model_module_version": "1.5.0",
|
2500 |
+
"_model_name": "DescriptionStyleModel",
|
2501 |
+
"_view_count": null,
|
2502 |
+
"_view_module": "@jupyter-widgets/base",
|
2503 |
+
"_view_module_version": "1.2.0",
|
2504 |
+
"_view_name": "StyleView",
|
2505 |
+
"description_width": ""
|
2506 |
+
}
|
2507 |
+
},
|
2508 |
+
"fad3fdc1097244a391cc7d85f11def68": {
|
2509 |
+
"model_module": "@jupyter-widgets/base",
|
2510 |
+
"model_module_version": "1.2.0",
|
2511 |
+
"model_name": "LayoutModel",
|
2512 |
+
"state": {
|
2513 |
+
"_model_module": "@jupyter-widgets/base",
|
2514 |
+
"_model_module_version": "1.2.0",
|
2515 |
+
"_model_name": "LayoutModel",
|
2516 |
+
"_view_count": null,
|
2517 |
+
"_view_module": "@jupyter-widgets/base",
|
2518 |
+
"_view_module_version": "1.2.0",
|
2519 |
+
"_view_name": "LayoutView",
|
2520 |
+
"align_content": null,
|
2521 |
+
"align_items": null,
|
2522 |
+
"align_self": null,
|
2523 |
+
"border": null,
|
2524 |
+
"bottom": null,
|
2525 |
+
"display": null,
|
2526 |
+
"flex": null,
|
2527 |
+
"flex_flow": null,
|
2528 |
+
"grid_area": null,
|
2529 |
+
"grid_auto_columns": null,
|
2530 |
+
"grid_auto_flow": null,
|
2531 |
+
"grid_auto_rows": null,
|
2532 |
+
"grid_column": null,
|
2533 |
+
"grid_gap": null,
|
2534 |
+
"grid_row": null,
|
2535 |
+
"grid_template_areas": null,
|
2536 |
+
"grid_template_columns": null,
|
2537 |
+
"grid_template_rows": null,
|
2538 |
+
"height": null,
|
2539 |
+
"justify_content": null,
|
2540 |
+
"justify_items": null,
|
2541 |
+
"left": null,
|
2542 |
+
"margin": null,
|
2543 |
+
"max_height": null,
|
2544 |
+
"max_width": null,
|
2545 |
+
"min_height": null,
|
2546 |
+
"min_width": null,
|
2547 |
+
"object_fit": null,
|
2548 |
+
"object_position": null,
|
2549 |
+
"order": null,
|
2550 |
+
"overflow": null,
|
2551 |
+
"overflow_x": null,
|
2552 |
+
"overflow_y": null,
|
2553 |
+
"padding": null,
|
2554 |
+
"right": null,
|
2555 |
+
"top": null,
|
2556 |
+
"visibility": null,
|
2557 |
+
"width": null
|
2558 |
+
}
|
2559 |
+
}
|
2560 |
+
}
|
2561 |
+
}
|
2562 |
+
},
|
2563 |
+
"nbformat": 4,
|
2564 |
+
"nbformat_minor": 4
|
2565 |
+
}
|