AnnaMats commited on
Commit
f1164f4
1 Parent(s): 73822ab

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.21 +/- 0.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3f2333f8d1f279885a008b66984409e3276367efee4e293f70e31a76bec7e00
3
+ size 106966
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78fea8c34a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x78fea8c38240>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 872320,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692783485600490437,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9f2mP0uisD/ELyY/FPG5P5MA3L/LDlA+i7WBPmHdWDrkHtw+FTyHP8N2176CmoE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo2KNPwN5wT9j2CI/xUfTP6Bcnb+v+U4/yY5Sv93KTL/Jn8G/2YpYP8Kjib/G/k8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1/aY/S6KwP8QvJj9W1ZY++DloP2eblr8U8bk/kwDcv8sOUD5zSmk/xLdLvjRWUr6LtYE+Yd1YOuQe3D7yqvk+s28bN6B5yD4VPIc/w3bXvoKagT6owc4/V5rLv777j7+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.3046252e+00 1.3799528e+00 6.4916635e-01]\n [ 1.4526696e+00 -1.7187675e+00 2.0318143e-01]\n [ 2.5333819e-01 8.2727341e-04 4.2992318e-01]\n [ 1.0565211e+00 -4.2082796e-01 2.5313193e-01]]",
34
+ "desired_goal": "[[ 1.1045727 1.5115055 0.6361143 ]\n [ 1.6506277 -1.2293892 0.80849737]\n [-0.8224912 -0.79997045 -1.5126888 ]\n [ 0.84586865 -1.07531 0.20312032]]",
35
+ "observation": "[[ 1.3046252e+00 1.3799528e+00 6.4916635e-01 2.9459637e-01\n 9.0713453e-01 -1.1766175e+00]\n [ 1.4526696e+00 -1.7187675e+00 2.0318143e-01 9.1129225e-01\n -1.9894320e-01 -2.0540696e-01]\n [ 2.5333819e-01 8.2727341e-04 4.2992318e-01 4.8763233e-01\n 9.2647269e-06 3.9155293e-01]\n [ 1.0565211e+00 -4.2082796e-01 2.5313193e-01 1.6152849e+00\n -1.5906476e+00 -1.1248701e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIlMFPUF0yL0jOG0+2AoGPfdQpb26gIE+Q5imPYyBCLyXGAc+Qo8Svmxw3D1Ftyg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.03254998 -0.09787799 0.23165946]\n [ 0.03272519 -0.08072083 0.25293523]\n [ 0.0813451 -0.00833167 0.13192974]\n [-0.14312461 0.1076363 0.16476162]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.12768000000000002,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7wTdtVJcxGMAWyUSwKMAXSUR0ChfO2Zy+6AdX2UKGgGR7/HU83dbgTAaAdLA2gIR0ChfD0kWykcdX2UKGgGR7++U9pyp71JaAdLAmgIR0Che9q8UVSGdX2UKGgGR7+D5XU6PsAvaAdLAWgIR0ChfPRqGlANdX2UKGgGR7+mEoOQQtjDaAdLAWgIR0Che+EwevIPdX2UKGgGR7/QmCiAUcn3aAdLA2gIR0ChfKLa24NJdX2UKGgGR7/D/Lkjopx4aAdLA2gIR0ChfEvjn3cpdX2UKGgGR7/IAcT8HfMwaAdLA2gIR0ChfQEZJkGzdX2UKGgGR7/XbHIZIg/1aAdLA2gIR0Che+3iiqQzdX2UKGgGR7/RUc4o7V8UaAdLA2gIR0ChfK/WtlqbdX2UKGgGR7/C11GLDQ7caAdLAmgIR0ChfQu1ndwedX2UKGgGR7+jfNzKcNH6aAdLAWgIR0ChfLZmqYJFdX2UKGgGR7/Qm2b5M10laAdLA2gIR0ChfFuPeYUndX2UKGgGR7/CIPbwjMV2aAdLAmgIR0Che/mYrrgPdX2UKGgGR7+plSS/0ulHaAdLAWgIR0ChfLtiYsundX2UKGgGR7/Bs+FDfFaTaAdLAmgIR0ChfGREF4cFdX2UKGgGR7/R01ZTyauwaAdLA2gIR0ChfRlC9h7WdX2UKGgGR7/CBkqc3EQ5aAdLAmgIR0ChfMPUz9CNdX2UKGgGR7+mTmnwXqJNaAdLAWgIR0ChfGjMNc4YdX2UKGgGR7/OYBNmDlHSaAdLA2gIR0ChfAZ2hZhbdX2UKGgGR7/AkWykbgjyaAdLAmgIR0ChfSP0RODbdX2UKGgGR7/PBzmwJPZaaAdLA2gIR0ChfNLJKaoddX2UKGgGR7/G57w8W9DhaAdLA2gIR0ChfHgPd2xIdX2UKGgGR7/ReSB9Tgl4aAdLA2gIR0ChfBX974SIdX2UKGgGR7/MzYVZcLSeaAdLA2gIR0ChfTE3S8aodX2UKGgGR7/QrGipNsWPaAdLA2gIR0ChfISG8EmqdX2UKGgGR7/QSvkiliz+aAdLA2gIR0ChfCKC6H0sdX2UKGgGR7+8+C9RJmNBaAdLAmgIR0ChfTwUxmCidX2UKGgGR7/YRUWEbo8qaAdLBGgIR0ChfOapgkTpdX2UKGgGR7/DxiG34Kx+aAdLAmgIR0ChfC2jGkvcdX2UKGgGR7/SnOSntOVPaAdLA2gIR0ChfPPEbYK6dX2UKGgGR7/QnfEXLvCuaAdLBGgIR0ChfJjwQUYbdX2UKGgGR7+2XdCVrylOaAdLAmgIR0ChfDaE8JUpdX2UKGgGR7/dddVvMr3CaAdLBGgIR0ChfU4rSVnmdX2UKGgGR7+jhtLteD3/aAdLAWgIR0ChfDrKmsNldX2UKGgGR7+lhb4agmJFaAdLAWgIR0ChfVQzk6tDdX2UKGgGR7+2ueSSvC/HaAdLAmgIR0ChfP6jFhoedX2UKGgGR7+kAJb+tKZlaAdLAWgIR0ChfQKoqCpWdX2UKGgGR7/MMgEEC/47aAdLA2gIR0ChfKeyAxzrdX2UKGgGR7+80pEx7AtWaAdLAmgIR0ChfVzeGfwrdX2UKGgGR7/QgqEvkBCEaAdLA2gIR0ChfEmJ3xFzdX2UKGgGR7/CqGUOd5IIaAdLAmgIR0ChfLBf0EowdX2UKGgGR7/LE0iyIHkcaAdLA2gIR0ChfRDiwSrYdX2UKGgGR7/W8gpz90ihaAdLA2gIR0ChfFnTy8SPdX2UKGgGR7/ZwAEMb3oLaAdLBGgIR0ChfXGLDQ7cdX2UKGgGR7/R9QGfPHDKaAdLA2gIR0ChfMH5SFXadX2UKGgGR7/QqesgdOqOaAdLA2gIR0ChfSGD+R5kdX2UKGgGR7+//yXlbNbDaAdLAmgIR0ChfXvNVzZIdX2UKGgGR7/TjPfKp1ifaAdLA2gIR0ChfGjwpe/pdX2UKGgGR7/Ht1p0wJw9aAdLA2gIR0ChfM+DnNgSdX2UKGgGR7/ED0163RXwaAdLAmgIR0ChfYZ5iVjadX2UKGgGR7/GmeDnNgSfaAdLA2gIR0ChfTD8DSw4dX2UKGgGR7/HXGwRoRI0aAdLA2gIR0ChfHb4zrNXdX2UKGgGR7/PVvMr3CbdaAdLA2gIR0ChfN4mCyyEdX2UKGgGR7/Sz7uUliSaaAdLA2gIR0ChfT2wV0tAdX2UKGgGR7+0tBfKISDiaAdLAmgIR0ChfIActGutdX2UKGgGR7/YjX4CZF5OaAdLBGgIR0ChfZfEfkmydX2UKGgGR7+mm+CbtqpMaAdLAWgIR0ChfUJgLJCCdX2UKGgGR7+975VOsT37aAdLAmgIR0ChfUzw+dK/dX2UKGgGR7/f/C66J66baAdLBGgIR0ChfPIs7MgVdX2UKGgGR7/Upy6tknTiaAdLA2gIR0ChfJAg5imVdX2UKGgGR7/BnQID5j6OaAdLAmgIR0ChfPsBIWgwdX2UKGgGR7/N03fhuO0caAdLA2gIR0ChfJ0ALiMpdX2UKGgGR7/Z0MPSUkfLaAdLBmgIR0ChfbbSqlxfdX2UKGgGR7/c3HaN+9amaAdLBGgIR0ChfWFdTo+wdX2UKGgGR7+n6fra/RE4aAdLAWgIR0ChfbsF+uvEdX2UKGgGR7/MiJO32EkCaAdLA2gIR0ChfQpRO1v3dX2UKGgGR7/CQbuMMqjKaAdLAmgIR0ChfKgCW/rTdX2UKGgGR7/L6X0Gu9vkaAdLA2gIR0ChfW2MCLdfdX2UKGgGR7/AegctGus+aAdLAmgIR0ChfLAlF+d9dX2UKGgGR7/MkjX4CZF5aAdLA2gIR0ChfceBYmsvdX2UKGgGR7+m2qkuYhMbaAdLAWgIR0ChfXJgLJCCdX2UKGgGR7/Sl4C6pYLcaAdLA2gIR0ChfRd87ZFodX2UKGgGR7+M8La24NI9aAdLAWgIR0Chfc6t1ZDBdX2UKGgGR7+3iQ1aW5YpaAdLAmgIR0ChfLvkBCD3dX2UKGgGR7/RQvHtF8XvaAdLA2gIR0ChfSa4UeuFdX2UKGgGR7/CekHlfZ27aAdLAmgIR0ChfMRd6cAjdX2UKGgGR7/V6zE74i5eaAdLA2gIR0ChfdutOmBOdX2UKGgGR7/U6NEPUaybaAdLBGgIR0ChfYaTGHYZdX2UKGgGR7+kwaisXBP9aAdLAWgIR0ChfSuG0u14dX2UKGgGR7+hksjFAE+xaAdLAWgIR0ChfeCxeLNwdX2UKGgGR7+/XqZ+hGpdaAdLAmgIR0ChfTW25QP7dX2UKGgGR7/S1v2oNutPaAdLA2gIR0ChfNNg8bJfdX2UKGgGR7/RPAfuCwr2aAdLA2gIR0ChfZVEuxr0dX2UKGgGR7/Qfe1rqMWHaAdLA2gIR0Chfe6w2VFAdX2UKGgGR7+8EPlMh5gPaAdLAmgIR0ChfT36InBtdX2UKGgGR7/MGsV+I/JOaAdLA2gIR0ChfaEka/ATdX2UKGgGR7+4J3PiT+vRaAdLAmgIR0ChfUagmJFcdX2UKGgGR7/TSF49ovi+aAdLBWgIR0ChfOrORkmQdX2UKGgGR7/ZXt0FKTStaAdLBGgIR0ChfgIZqEeydX2UKGgGR7/LEx7AtWdVaAdLA2gIR0ChfVWXkYGddX2UKGgGR7/J0nPVurIYaAdLA2gIR0Chfg5wGW2PdX2UKGgGR7/bNh3JPqLTaAdLBWgIR0ChfbkWhysCdX2UKGgGR7/dix3V09yMaAdLBGgIR0ChfPuzyBkJdX2UKGgGR7+5sMy8BdUsaAdLAmgIR0ChfcPBBRhudX2UKGgGR7/Sifg75mAcaAdLBGgIR0ChfWkkKNQ1dX2UKGgGR7/FXvH93r2QaAdLA2gIR0Chfh46XBxhdX2UKGgGR7+HuNPxhDw6aAdLAWgIR0ChfW2TxG2DdX2UKGgGR7/N/QSi/O+qaAdLBGgIR0ChfRCMglnidX2UKGgGR7/AS9ugpSaWaAdLAmgIR0ChfXdTgl4UdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 43616,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6347b1ac04ba4ba97f0121d6fd0e336aeb264e6141db603aaac15db066167cd
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd3a17112fdb186d5fafffaabe4aaf128bc98eba3bcfcd57a653f8618a04c59e
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78fea8c34a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78fea8c38240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 872320, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692783485600490437, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9f2mP0uisD/ELyY/FPG5P5MA3L/LDlA+i7WBPmHdWDrkHtw+FTyHP8N2176CmoE+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo2KNPwN5wT9j2CI/xUfTP6Bcnb+v+U4/yY5Sv93KTL/Jn8G/2YpYP8Kjib/G/k8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1/aY/S6KwP8QvJj9W1ZY++DloP2eblr8U8bk/kwDcv8sOUD5zSmk/xLdLvjRWUr6LtYE+Yd1YOuQe3D7yqvk+s28bN6B5yD4VPIc/w3bXvoKagT6owc4/V5rLv777j7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.3046252e+00 1.3799528e+00 6.4916635e-01]\n [ 1.4526696e+00 -1.7187675e+00 2.0318143e-01]\n [ 2.5333819e-01 8.2727341e-04 4.2992318e-01]\n [ 1.0565211e+00 -4.2082796e-01 2.5313193e-01]]", "desired_goal": "[[ 1.1045727 1.5115055 0.6361143 ]\n [ 1.6506277 -1.2293892 0.80849737]\n [-0.8224912 -0.79997045 -1.5126888 ]\n [ 0.84586865 -1.07531 0.20312032]]", "observation": "[[ 1.3046252e+00 1.3799528e+00 6.4916635e-01 2.9459637e-01\n 9.0713453e-01 -1.1766175e+00]\n [ 1.4526696e+00 -1.7187675e+00 2.0318143e-01 9.1129225e-01\n -1.9894320e-01 -2.0540696e-01]\n [ 2.5333819e-01 8.2727341e-04 4.2992318e-01 4.8763233e-01\n 9.2647269e-06 3.9155293e-01]\n [ 1.0565211e+00 -4.2082796e-01 2.5313193e-01 1.6152849e+00\n -1.5906476e+00 -1.1248701e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIlMFPUF0yL0jOG0+2AoGPfdQpb26gIE+Q5imPYyBCLyXGAc+Qo8Svmxw3D1Ftyg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03254998 -0.09787799 0.23165946]\n [ 0.03272519 -0.08072083 0.25293523]\n [ 0.0813451 -0.00833167 0.13192974]\n [-0.14312461 0.1076363 0.16476162]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.12768000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7wTdtVJcxGMAWyUSwKMAXSUR0ChfO2Zy+6AdX2UKGgGR7/HU83dbgTAaAdLA2gIR0ChfD0kWykcdX2UKGgGR7++U9pyp71JaAdLAmgIR0Che9q8UVSGdX2UKGgGR7+D5XU6PsAvaAdLAWgIR0ChfPRqGlANdX2UKGgGR7+mEoOQQtjDaAdLAWgIR0Che+EwevIPdX2UKGgGR7/QmCiAUcn3aAdLA2gIR0ChfKLa24NJdX2UKGgGR7/D/Lkjopx4aAdLA2gIR0ChfEvjn3cpdX2UKGgGR7/IAcT8HfMwaAdLA2gIR0ChfQEZJkGzdX2UKGgGR7/XbHIZIg/1aAdLA2gIR0Che+3iiqQzdX2UKGgGR7/RUc4o7V8UaAdLA2gIR0ChfK/WtlqbdX2UKGgGR7/C11GLDQ7caAdLAmgIR0ChfQu1ndwedX2UKGgGR7+jfNzKcNH6aAdLAWgIR0ChfLZmqYJFdX2UKGgGR7/Qm2b5M10laAdLA2gIR0ChfFuPeYUndX2UKGgGR7/CIPbwjMV2aAdLAmgIR0Che/mYrrgPdX2UKGgGR7+plSS/0ulHaAdLAWgIR0ChfLtiYsundX2UKGgGR7/Bs+FDfFaTaAdLAmgIR0ChfGREF4cFdX2UKGgGR7/R01ZTyauwaAdLA2gIR0ChfRlC9h7WdX2UKGgGR7/CBkqc3EQ5aAdLAmgIR0ChfMPUz9CNdX2UKGgGR7+mTmnwXqJNaAdLAWgIR0ChfGjMNc4YdX2UKGgGR7/OYBNmDlHSaAdLA2gIR0ChfAZ2hZhbdX2UKGgGR7/AkWykbgjyaAdLAmgIR0ChfSP0RODbdX2UKGgGR7/PBzmwJPZaaAdLA2gIR0ChfNLJKaoddX2UKGgGR7/G57w8W9DhaAdLA2gIR0ChfHgPd2xIdX2UKGgGR7/ReSB9Tgl4aAdLA2gIR0ChfBX974SIdX2UKGgGR7/MzYVZcLSeaAdLA2gIR0ChfTE3S8aodX2UKGgGR7/QrGipNsWPaAdLA2gIR0ChfISG8EmqdX2UKGgGR7/QSvkiliz+aAdLA2gIR0ChfCKC6H0sdX2UKGgGR7+8+C9RJmNBaAdLAmgIR0ChfTwUxmCidX2UKGgGR7/YRUWEbo8qaAdLBGgIR0ChfOapgkTpdX2UKGgGR7/DxiG34Kx+aAdLAmgIR0ChfC2jGkvcdX2UKGgGR7/SnOSntOVPaAdLA2gIR0ChfPPEbYK6dX2UKGgGR7/QnfEXLvCuaAdLBGgIR0ChfJjwQUYbdX2UKGgGR7+2XdCVrylOaAdLAmgIR0ChfDaE8JUpdX2UKGgGR7/dddVvMr3CaAdLBGgIR0ChfU4rSVnmdX2UKGgGR7+jhtLteD3/aAdLAWgIR0ChfDrKmsNldX2UKGgGR7+lhb4agmJFaAdLAWgIR0ChfVQzk6tDdX2UKGgGR7+2ueSSvC/HaAdLAmgIR0ChfP6jFhoedX2UKGgGR7+kAJb+tKZlaAdLAWgIR0ChfQKoqCpWdX2UKGgGR7/MMgEEC/47aAdLA2gIR0ChfKeyAxzrdX2UKGgGR7+80pEx7AtWaAdLAmgIR0ChfVzeGfwrdX2UKGgGR7/QgqEvkBCEaAdLA2gIR0ChfEmJ3xFzdX2UKGgGR7/CqGUOd5IIaAdLAmgIR0ChfLBf0EowdX2UKGgGR7/LE0iyIHkcaAdLA2gIR0ChfRDiwSrYdX2UKGgGR7/W8gpz90ihaAdLA2gIR0ChfFnTy8SPdX2UKGgGR7/ZwAEMb3oLaAdLBGgIR0ChfXGLDQ7cdX2UKGgGR7/R9QGfPHDKaAdLA2gIR0ChfMH5SFXadX2UKGgGR7/QqesgdOqOaAdLA2gIR0ChfSGD+R5kdX2UKGgGR7+//yXlbNbDaAdLAmgIR0ChfXvNVzZIdX2UKGgGR7/TjPfKp1ifaAdLA2gIR0ChfGjwpe/pdX2UKGgGR7/Ht1p0wJw9aAdLA2gIR0ChfM+DnNgSdX2UKGgGR7/ED0163RXwaAdLAmgIR0ChfYZ5iVjadX2UKGgGR7/GmeDnNgSfaAdLA2gIR0ChfTD8DSw4dX2UKGgGR7/HXGwRoRI0aAdLA2gIR0ChfHb4zrNXdX2UKGgGR7/PVvMr3CbdaAdLA2gIR0ChfN4mCyyEdX2UKGgGR7/Sz7uUliSaaAdLA2gIR0ChfT2wV0tAdX2UKGgGR7+0tBfKISDiaAdLAmgIR0ChfIActGutdX2UKGgGR7/YjX4CZF5OaAdLBGgIR0ChfZfEfkmydX2UKGgGR7+mm+CbtqpMaAdLAWgIR0ChfUJgLJCCdX2UKGgGR7+975VOsT37aAdLAmgIR0ChfUzw+dK/dX2UKGgGR7/f/C66J66baAdLBGgIR0ChfPIs7MgVdX2UKGgGR7/Upy6tknTiaAdLA2gIR0ChfJAg5imVdX2UKGgGR7/BnQID5j6OaAdLAmgIR0ChfPsBIWgwdX2UKGgGR7/N03fhuO0caAdLA2gIR0ChfJ0ALiMpdX2UKGgGR7/Z0MPSUkfLaAdLBmgIR0ChfbbSqlxfdX2UKGgGR7/c3HaN+9amaAdLBGgIR0ChfWFdTo+wdX2UKGgGR7+n6fra/RE4aAdLAWgIR0ChfbsF+uvEdX2UKGgGR7/MiJO32EkCaAdLA2gIR0ChfQpRO1v3dX2UKGgGR7/CQbuMMqjKaAdLAmgIR0ChfKgCW/rTdX2UKGgGR7/L6X0Gu9vkaAdLA2gIR0ChfW2MCLdfdX2UKGgGR7/AegctGus+aAdLAmgIR0ChfLAlF+d9dX2UKGgGR7/MkjX4CZF5aAdLA2gIR0ChfceBYmsvdX2UKGgGR7+m2qkuYhMbaAdLAWgIR0ChfXJgLJCCdX2UKGgGR7/Sl4C6pYLcaAdLA2gIR0ChfRd87ZFodX2UKGgGR7+M8La24NI9aAdLAWgIR0Chfc6t1ZDBdX2UKGgGR7+3iQ1aW5YpaAdLAmgIR0ChfLvkBCD3dX2UKGgGR7/RQvHtF8XvaAdLA2gIR0ChfSa4UeuFdX2UKGgGR7/CekHlfZ27aAdLAmgIR0ChfMRd6cAjdX2UKGgGR7/V6zE74i5eaAdLA2gIR0ChfdutOmBOdX2UKGgGR7/U6NEPUaybaAdLBGgIR0ChfYaTGHYZdX2UKGgGR7+kwaisXBP9aAdLAWgIR0ChfSuG0u14dX2UKGgGR7+hksjFAE+xaAdLAWgIR0ChfeCxeLNwdX2UKGgGR7+/XqZ+hGpdaAdLAmgIR0ChfTW25QP7dX2UKGgGR7/S1v2oNutPaAdLA2gIR0ChfNNg8bJfdX2UKGgGR7/RPAfuCwr2aAdLA2gIR0ChfZVEuxr0dX2UKGgGR7/Qfe1rqMWHaAdLA2gIR0Chfe6w2VFAdX2UKGgGR7+8EPlMh5gPaAdLAmgIR0ChfT36InBtdX2UKGgGR7/MGsV+I/JOaAdLA2gIR0ChfaEka/ATdX2UKGgGR7+4J3PiT+vRaAdLAmgIR0ChfUagmJFcdX2UKGgGR7/TSF49ovi+aAdLBWgIR0ChfOrORkmQdX2UKGgGR7/ZXt0FKTStaAdLBGgIR0ChfgIZqEeydX2UKGgGR7/LEx7AtWdVaAdLA2gIR0ChfVWXkYGddX2UKGgGR7/J0nPVurIYaAdLA2gIR0Chfg5wGW2PdX2UKGgGR7/bNh3JPqLTaAdLBWgIR0ChfbkWhysCdX2UKGgGR7/dix3V09yMaAdLBGgIR0ChfPuzyBkJdX2UKGgGR7+5sMy8BdUsaAdLAmgIR0ChfcPBBRhudX2UKGgGR7/Sifg75mAcaAdLBGgIR0ChfWkkKNQ1dX2UKGgGR7/FXvH93r2QaAdLA2gIR0Chfh46XBxhdX2UKGgGR7+HuNPxhDw6aAdLAWgIR0ChfW2TxG2DdX2UKGgGR7/N/QSi/O+qaAdLBGgIR0ChfRCMglnidX2UKGgGR7/AS9ugpSaWaAdLAmgIR0ChfXdTgl4UdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 43616, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (663 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.20927545260637997, "std_reward": 0.07919959297920356, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-23T10:15:36.174464"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8087843e5676a44d006c57404d2e1c837213c839cb1ee7fd8812aa098f992db2
3
+ size 2623