File size: 8,042 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
using UnityEngine;
using Unity.MLAgents;
using Unity.MLAgents.Actuators;
using Unity.MLAgentsExamples;
using Unity.MLAgents.Sensors;
[RequireComponent(typeof(JointDriveController))] // Required to set joint forces
public class WormAgent : Agent
{
const float m_MaxWalkingSpeed = 10; //The max walking speed
[Header("Target Prefabs")] public Transform TargetPrefab; //Target prefab to use in Dynamic envs
private Transform m_Target; //Target the agent will walk towards during training.
[Header("Body Parts")] public Transform bodySegment0;
public Transform bodySegment1;
public Transform bodySegment2;
public Transform bodySegment3;
//This will be used as a stabilized model space reference point for observations
//Because ragdolls can move erratically during training, using a stabilized reference transform improves learning
OrientationCubeController m_OrientationCube;
//The indicator graphic gameobject that points towards the target
DirectionIndicator m_DirectionIndicator;
JointDriveController m_JdController;
private Vector3 m_StartingPos; //starting position of the agent
public override void Initialize()
{
SpawnTarget(TargetPrefab, transform.position); //spawn target
m_StartingPos = bodySegment0.position;
m_OrientationCube = GetComponentInChildren<OrientationCubeController>();
m_DirectionIndicator = GetComponentInChildren<DirectionIndicator>();
m_JdController = GetComponent<JointDriveController>();
UpdateOrientationObjects();
//Setup each body part
m_JdController.SetupBodyPart(bodySegment0);
m_JdController.SetupBodyPart(bodySegment1);
m_JdController.SetupBodyPart(bodySegment2);
m_JdController.SetupBodyPart(bodySegment3);
}
/// <summary>
/// Spawns a target prefab at pos
/// </summary>
/// <param name="prefab"></param>
/// <param name="pos"></param>
void SpawnTarget(Transform prefab, Vector3 pos)
{
m_Target = Instantiate(prefab, pos, Quaternion.identity, transform.parent);
}
/// <summary>
/// Loop over body parts and reset them to initial conditions.
/// </summary>
public override void OnEpisodeBegin()
{
foreach (var bodyPart in m_JdController.bodyPartsList)
{
bodyPart.Reset(bodyPart);
}
//Random start rotation to help generalize
bodySegment0.rotation = Quaternion.Euler(0, Random.Range(0.0f, 360.0f), 0);
UpdateOrientationObjects();
}
/// <summary>
/// Add relevant information on each body part to observations.
/// </summary>
public void CollectObservationBodyPart(BodyPart bp, VectorSensor sensor)
{
//GROUND CHECK
sensor.AddObservation(bp.groundContact.touchingGround ? 1 : 0); // Whether the bp touching the ground
//Get velocities in the context of our orientation cube's space
//Note: You can get these velocities in world space as well but it may not train as well.
sensor.AddObservation(m_OrientationCube.transform.InverseTransformDirection(bp.rb.velocity));
sensor.AddObservation(m_OrientationCube.transform.InverseTransformDirection(bp.rb.angularVelocity));
if (bp.rb.transform != bodySegment0)
{
//Get position relative to hips in the context of our orientation cube's space
sensor.AddObservation(
m_OrientationCube.transform.InverseTransformDirection(bp.rb.position - bodySegment0.position));
sensor.AddObservation(bp.rb.transform.localRotation);
}
if (bp.joint)
sensor.AddObservation(bp.currentStrength / m_JdController.maxJointForceLimit);
}
public override void CollectObservations(VectorSensor sensor)
{
RaycastHit hit;
float maxDist = 10;
if (Physics.Raycast(bodySegment0.position, Vector3.down, out hit, maxDist))
{
sensor.AddObservation(hit.distance / maxDist);
}
else
sensor.AddObservation(1);
var cubeForward = m_OrientationCube.transform.forward;
var velGoal = cubeForward * m_MaxWalkingSpeed;
sensor.AddObservation(m_OrientationCube.transform.InverseTransformDirection(velGoal));
sensor.AddObservation(Quaternion.Angle(m_OrientationCube.transform.rotation,
m_JdController.bodyPartsDict[bodySegment0].rb.rotation) / 180);
sensor.AddObservation(Quaternion.FromToRotation(bodySegment0.forward, cubeForward));
//Add pos of target relative to orientation cube
sensor.AddObservation(m_OrientationCube.transform.InverseTransformPoint(m_Target.transform.position));
foreach (var bodyPart in m_JdController.bodyPartsList)
{
CollectObservationBodyPart(bodyPart, sensor);
}
}
/// <summary>
/// Agent touched the target
/// </summary>
public void TouchedTarget()
{
AddReward(1f);
}
public override void OnActionReceived(ActionBuffers actionBuffers)
{
// The dictionary with all the body parts in it are in the jdController
var bpDict = m_JdController.bodyPartsDict;
var i = -1;
var continuousActions = actionBuffers.ContinuousActions;
// Pick a new target joint rotation
bpDict[bodySegment0].SetJointTargetRotation(continuousActions[++i], continuousActions[++i], 0);
bpDict[bodySegment1].SetJointTargetRotation(continuousActions[++i], continuousActions[++i], 0);
bpDict[bodySegment2].SetJointTargetRotation(continuousActions[++i], continuousActions[++i], 0);
// Update joint strength
bpDict[bodySegment0].SetJointStrength(continuousActions[++i]);
bpDict[bodySegment1].SetJointStrength(continuousActions[++i]);
bpDict[bodySegment2].SetJointStrength(continuousActions[++i]);
//Reset if Worm fell through floor;
if (bodySegment0.position.y < m_StartingPos.y - 2)
{
EndEpisode();
}
}
void FixedUpdate()
{
UpdateOrientationObjects();
var velReward =
GetMatchingVelocityReward(m_OrientationCube.transform.forward * m_MaxWalkingSpeed,
m_JdController.bodyPartsDict[bodySegment0].rb.velocity);
//Angle of the rotation delta between cube and body.
//This will range from (0, 180)
var rotAngle = Quaternion.Angle(m_OrientationCube.transform.rotation,
m_JdController.bodyPartsDict[bodySegment0].rb.rotation);
//The reward for facing the target
var facingRew = 0f;
//If we are within 30 degrees of facing the target
if (rotAngle < 30)
{
//Set normalized facingReward
//Facing the target perfectly yields a reward of 1
facingRew = 1 - (rotAngle / 180);
}
//Add the product of these two rewards
AddReward(velReward * facingRew);
}
/// <summary>
/// Normalized value of the difference in actual speed vs goal walking speed.
/// </summary>
public float GetMatchingVelocityReward(Vector3 velocityGoal, Vector3 actualVelocity)
{
//distance between our actual velocity and goal velocity
var velDeltaMagnitude = Mathf.Clamp(Vector3.Distance(actualVelocity, velocityGoal), 0, m_MaxWalkingSpeed);
//return the value on a declining sigmoid shaped curve that decays from 1 to 0
//This reward will approach 1 if it matches perfectly and approach zero as it deviates
return Mathf.Pow(1 - Mathf.Pow(velDeltaMagnitude / m_MaxWalkingSpeed, 2), 2);
}
/// <summary>
/// Update OrientationCube and DirectionIndicator
/// </summary>
void UpdateOrientationObjects()
{
m_OrientationCube.UpdateOrientation(bodySegment0, m_Target);
if (m_DirectionIndicator)
{
m_DirectionIndicator.MatchOrientation(m_OrientationCube.transform);
}
}
}
|