File size: 10,511 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
using System.Collections.Generic;
using System.Diagnostics;
using Unity.Barracuda;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Policies;
using Unity.MLAgents.Sensors;
using UnityEngine;
#if MLA_UNITY_ANALYTICS_MODULE && ENABLE_CLOUD_SERVICES_ANALYTICS
using UnityEngine.Analytics;
#endif
#if UNITY_EDITOR
using UnityEditor;
#if MLA_UNITY_ANALYTICS_MODULE
using UnityEditor.Analytics;
#endif // MLA_UNITY_ANALYTICS_MODULE
#endif // UNITY_EDITOR
namespace Unity.MLAgents.Analytics
{
internal class InferenceAnalytics
{
const string k_VendorKey = "unity.ml-agents";
const string k_EventName = "ml_agents_inferencemodelset";
const int k_EventVersion = 1;
/// <summary>
/// Whether or not we've registered this particular event yet
/// </summary>
static bool s_EventRegistered;
/// <summary>
/// Hourly limit for this event name
/// </summary>
const int k_MaxEventsPerHour = 1000;
/// <summary>
/// Maximum number of items in this event.
/// </summary>
const int k_MaxNumberOfElements = 1000;
#if UNITY_EDITOR && MLA_UNITY_ANALYTICS_MODULE && ENABLE_CLOUD_SERVICES_ANALYTICS
/// <summary>
/// Models that we've already sent events for.
/// </summary>
private static HashSet<NNModel> s_SentModels;
#endif
static bool EnableAnalytics()
{
#if UNITY_EDITOR && MLA_UNITY_ANALYTICS_MODULE && ENABLE_CLOUD_SERVICES_ANALYTICS
if (s_EventRegistered)
{
return true;
}
AnalyticsResult result = EditorAnalytics.RegisterEventWithLimit(k_EventName, k_MaxEventsPerHour, k_MaxNumberOfElements, k_VendorKey, k_EventVersion);
if (result == AnalyticsResult.Ok)
{
s_EventRegistered = true;
}
if (s_EventRegistered && s_SentModels == null)
{
s_SentModels = new HashSet<NNModel>();
}
#else // no editor, no analytics
s_EventRegistered = false;
#endif
return s_EventRegistered;
}
public static bool IsAnalyticsEnabled()
{
#if UNITY_EDITOR
return EditorAnalytics.enabled;
#else
return false;
#endif
}
/// <summary>
/// Send an analytics event for the NNModel when it is set up for inference.
/// No events will be sent if analytics are disabled, and at most one event
/// will be sent per model instance.
/// </summary>
/// <param name="nnModel">The NNModel being used for inference.</param>
/// <param name="behaviorName">The BehaviorName of the Agent using the model</param>
/// <param name="inferenceDevice">Whether inference is being performed on the CPU or GPU</param>
/// <param name="sensors">List of ISensors for the Agent. Used to generate information about the observation space.</param>
/// <param name="actionSpec">ActionSpec for the Agent. Used to generate information about the action space.</param>
/// <param name="actuators">List of IActuators for the Agent. Used to generate information about the action space.</param>
/// <returns></returns>
[Conditional("MLA_UNITY_ANALYTICS_MODULE")]
public static void InferenceModelSet(
NNModel nnModel,
string behaviorName,
InferenceDevice inferenceDevice,
IList<ISensor> sensors,
ActionSpec actionSpec,
IList<IActuator> actuators
)
{
#if UNITY_EDITOR && MLA_UNITY_ANALYTICS_MODULE && ENABLE_CLOUD_SERVICES_ANALYTICS
// The event shouldn't be able to report if this is disabled but if we know we're not going to report
// Lets early out and not waste time gathering all the data
if (!IsAnalyticsEnabled())
return;
if (!EnableAnalytics())
return;
var added = s_SentModels.Add(nnModel);
if (!added)
{
// We previously added this model. Exit so we don't resend.
return;
}
var data = GetEventForModel(nnModel, behaviorName, inferenceDevice, sensors, actionSpec, actuators);
// Note - to debug, use JsonUtility.ToJson on the event.
// Debug.Log(JsonUtility.ToJson(data, true));
if (AnalyticsUtils.s_SendEditorAnalytics)
{
EditorAnalytics.SendEventWithLimit(k_EventName, data, k_EventVersion);
}
#endif
}
/// <summary>
/// Generate an InferenceEvent for the model.
/// </summary>
/// <param name="nnModel"></param>
/// <param name="behaviorName"></param>
/// <param name="inferenceDevice"></param>
/// <param name="sensors"></param>
/// <param name="actionSpec"></param>
/// <param name="actuators"></param>
/// <returns></returns>
internal static InferenceEvent GetEventForModel(
NNModel nnModel,
string behaviorName,
InferenceDevice inferenceDevice,
IList<ISensor> sensors,
ActionSpec actionSpec,
IList<IActuator> actuators
)
{
var barracudaModel = ModelLoader.Load(nnModel);
var inferenceEvent = new InferenceEvent();
// Hash the behavior name so that there's no concern about PII or "secret" data being leaked.
inferenceEvent.BehaviorName = AnalyticsUtils.Hash(k_VendorKey, behaviorName);
inferenceEvent.BarracudaModelSource = barracudaModel.IrSource;
inferenceEvent.BarracudaModelVersion = barracudaModel.IrVersion;
inferenceEvent.BarracudaModelProducer = barracudaModel.ProducerName;
inferenceEvent.MemorySize = (int)barracudaModel.GetTensorByName(TensorNames.MemorySize)[0];
inferenceEvent.InferenceDevice = (int)inferenceDevice;
if (barracudaModel.ProducerName == "Script")
{
// .nn files don't have these fields set correctly. Assign some placeholder values.
inferenceEvent.BarracudaModelSource = "NN";
inferenceEvent.BarracudaModelProducer = "tensorflow_to_barracuda.py";
}
#if UNITY_EDITOR
var barracudaPackageInfo = UnityEditor.PackageManager.PackageInfo.FindForAssembly(typeof(Tensor).Assembly);
inferenceEvent.BarracudaPackageVersion = barracudaPackageInfo.version;
#else
inferenceEvent.BarracudaPackageVersion = null;
#endif
inferenceEvent.ActionSpec = EventActionSpec.FromActionSpec(actionSpec);
inferenceEvent.ObservationSpecs = new List<EventObservationSpec>(sensors.Count);
foreach (var sensor in sensors)
{
inferenceEvent.ObservationSpecs.Add(EventObservationSpec.FromSensor(sensor));
}
inferenceEvent.ActuatorInfos = new List<EventActuatorInfo>(actuators.Count);
foreach (var actuator in actuators)
{
inferenceEvent.ActuatorInfos.Add(EventActuatorInfo.FromActuator(actuator));
}
inferenceEvent.TotalWeightSizeBytes = GetModelWeightSize(barracudaModel);
inferenceEvent.ModelHash = GetModelHash(barracudaModel);
return inferenceEvent;
}
/// <summary>
/// Compute the total model weight size in bytes.
/// This corresponds to the "Total weight size" display in the Barracuda inspector,
/// and the calculations are the same.
/// </summary>
/// <param name="barracudaModel"></param>
/// <returns></returns>
static long GetModelWeightSize(Model barracudaModel)
{
long totalWeightsSizeInBytes = 0;
for (var l = 0; l < barracudaModel.layers.Count; ++l)
{
for (var d = 0; d < barracudaModel.layers[l].datasets.Length; ++d)
{
totalWeightsSizeInBytes += barracudaModel.layers[l].datasets[d].length;
}
}
return totalWeightsSizeInBytes;
}
/// <summary>
/// Wrapper around Hash128 that supports Append(float[], int, int)
/// </summary>
struct MLAgentsHash128
{
private Hash128 m_Hash;
public void Append(float[] values, int count)
{
if (values == null)
{
return;
}
// Pre-2020 versions of Unity don't have Hash128.Append() (can only hash strings and scalars)
// For these versions, we'll hash element by element.
#if UNITY_2020_1_OR_NEWER
m_Hash.Append(values, 0, count);
#else
for (var i = 0; i < count; i++)
{
var tempHash = new Hash128();
HashUtilities.ComputeHash128(ref values[i], ref tempHash);
HashUtilities.AppendHash(ref tempHash, ref m_Hash);
}
#endif
}
public void Append(string value)
{
var tempHash = Hash128.Compute(value);
HashUtilities.AppendHash(ref tempHash, ref m_Hash);
}
public override string ToString()
{
return m_Hash.ToString();
}
}
/// <summary>
/// Compute a hash of the model's layer data and return it as a string.
/// A subset of the layer weights are used for performance.
/// This increases the chance of a collision, but this should still be extremely rare.
/// </summary>
/// <param name="barracudaModel"></param>
/// <returns></returns>
static string GetModelHash(Model barracudaModel)
{
var hash = new MLAgentsHash128();
// Limit the max number of float bytes that we hash for performance.
const int kMaxFloats = 256;
foreach (var layer in barracudaModel.layers)
{
hash.Append(layer.name);
var numFloatsToHash = Mathf.Min(layer.weights.Length, kMaxFloats);
hash.Append(layer.weights, numFloatsToHash);
}
return hash.ToString();
}
}
}
|