File size: 7,841 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
using System.Collections.Generic;
using System.Linq;
using Unity.MLAgents.Inference.Utils;
using Unity.MLAgents.Actuators;
using Unity.Barracuda;
using UnityEngine;
namespace Unity.MLAgents.Inference
{
/// <summary>
/// The Applier for the Continuous Action output tensor. Tensor is assumed to contain the
/// continuous action data of the agents in the batch.
/// </summary>
internal class ContinuousActionOutputApplier : TensorApplier.IApplier
{
readonly ActionSpec m_ActionSpec;
public ContinuousActionOutputApplier(ActionSpec actionSpec)
{
m_ActionSpec = actionSpec;
}
public void Apply(TensorProxy tensorProxy, IList<int> actionIds, Dictionary<int, ActionBuffers> lastActions)
{
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
var agentIndex = 0;
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
if (lastActions.ContainsKey(agentId))
{
var actionBuffer = lastActions[agentId];
if (actionBuffer.IsEmpty())
{
actionBuffer = new ActionBuffers(m_ActionSpec);
lastActions[agentId] = actionBuffer;
}
var continuousBuffer = actionBuffer.ContinuousActions;
for (var j = 0; j < actionSize; j++)
{
continuousBuffer[j] = tensorProxy.data[agentIndex, j];
}
}
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Discrete Action output tensor.
/// </summary>
internal class DiscreteActionOutputApplier : TensorApplier.IApplier
{
readonly ActionSpec m_ActionSpec;
public DiscreteActionOutputApplier(ActionSpec actionSpec, int seed, ITensorAllocator allocator)
{
m_ActionSpec = actionSpec;
}
public void Apply(TensorProxy tensorProxy, IList<int> actionIds, Dictionary<int, ActionBuffers> lastActions)
{
var agentIndex = 0;
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
if (lastActions.ContainsKey(agentId))
{
var actionBuffer = lastActions[agentId];
if (actionBuffer.IsEmpty())
{
actionBuffer = new ActionBuffers(m_ActionSpec);
lastActions[agentId] = actionBuffer;
}
var discreteBuffer = actionBuffer.DiscreteActions;
for (var j = 0; j < actionSize; j++)
{
discreteBuffer[j] = (int)tensorProxy.data[agentIndex, j];
}
}
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Discrete Action output tensor. Uses multinomial to sample discrete
/// actions from the logits contained in the tensor.
/// </summary>
internal class LegacyDiscreteActionOutputApplier : TensorApplier.IApplier
{
readonly int[] m_ActionSize;
readonly Multinomial m_Multinomial;
readonly ActionSpec m_ActionSpec;
readonly int[] m_StartActionIndices;
readonly float[] m_CdfBuffer;
public LegacyDiscreteActionOutputApplier(ActionSpec actionSpec, int seed, ITensorAllocator allocator)
{
m_ActionSize = actionSpec.BranchSizes;
m_Multinomial = new Multinomial(seed);
m_ActionSpec = actionSpec;
m_StartActionIndices = Utilities.CumSum(m_ActionSize);
// Scratch space for computing the cumulative distribution function.
// In order to reuse it, make it the size of the largest branch.
var largestBranch = Mathf.Max(m_ActionSize);
m_CdfBuffer = new float[largestBranch];
}
public void Apply(TensorProxy tensorProxy, IList<int> actionIds, Dictionary<int, ActionBuffers> lastActions)
{
var agentIndex = 0;
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
if (lastActions.ContainsKey(agentId))
{
var actionBuffer = lastActions[agentId];
if (actionBuffer.IsEmpty())
{
actionBuffer = new ActionBuffers(m_ActionSpec);
lastActions[agentId] = actionBuffer;
}
var discreteBuffer = actionBuffer.DiscreteActions;
for (var j = 0; j < m_ActionSize.Length; j++)
{
ComputeCdf(tensorProxy, agentIndex, m_StartActionIndices[j], m_ActionSize[j]);
discreteBuffer[j] = m_Multinomial.Sample(m_CdfBuffer, m_ActionSize[j]);
}
}
agentIndex++;
}
}
/// <summary>
/// Compute the cumulative distribution function for a given agent's action
/// given the log-probabilities.
/// The results are stored in m_CdfBuffer, which is the size of the largest action's number of branches.
/// </summary>
/// <param name="logProbs"></param>
/// <param name="batch">Index of the agent being considered</param>
/// <param name="channelOffset">Offset into the tensor's channel.</param>
/// <param name="branchSize"></param>
internal void ComputeCdf(TensorProxy logProbs, int batch, int channelOffset, int branchSize)
{
// Find the class maximum
var maxProb = float.NegativeInfinity;
for (var cls = 0; cls < branchSize; ++cls)
{
maxProb = Mathf.Max(logProbs.data[batch, cls + channelOffset], maxProb);
}
// Sum the log probabilities and compute CDF
var sumProb = 0.0f;
for (var cls = 0; cls < branchSize; ++cls)
{
sumProb += Mathf.Exp(logProbs.data[batch, cls + channelOffset] - maxProb);
m_CdfBuffer[cls] = sumProb;
}
}
}
/// <summary>
/// The Applier for the Memory output tensor. Tensor is assumed to contain the new
/// memory data of the agents in the batch.
/// </summary>
internal class MemoryOutputApplier : TensorApplier.IApplier
{
Dictionary<int, List<float>> m_Memories;
public MemoryOutputApplier(
Dictionary<int, List<float>> memories)
{
m_Memories = memories;
}
public void Apply(TensorProxy tensorProxy, IList<int> actionIds, Dictionary<int, ActionBuffers> lastActions)
{
var agentIndex = 0;
var memorySize = tensorProxy.data.width;
for (var i = 0; i < actionIds.Count; i++)
{
var agentId = actionIds[i];
List<float> memory;
if (!m_Memories.TryGetValue(agentId, out memory)
|| memory.Count < memorySize)
{
memory = new List<float>();
memory.AddRange(Enumerable.Repeat(0f, memorySize));
}
for (var j = 0; j < memorySize; j++)
{
memory[j] = tensorProxy.data[agentIndex, 0, j, 0];
}
m_Memories[agentId] = memory;
agentIndex++;
}
}
}
}
|