File size: 18,631 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
using System;
using System.Collections.Generic;
using System.Linq;
using Unity.Barracuda;
using FailedCheck = Unity.MLAgents.Inference.BarracudaModelParamLoader.FailedCheck;
namespace Unity.MLAgents.Inference
{
/// <summary>
/// Barracuda Model extension methods.
/// </summary>
internal static class BarracudaModelExtensions
{
/// <summary>
/// Get array of the input tensor names of the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>Array of the input tensor names of the model</returns>
public static string[] GetInputNames(this Model model)
{
var names = new List<string>();
if (model == null)
return names.ToArray();
foreach (var input in model.inputs)
{
names.Add(input.name);
}
foreach (var mem in model.memories)
{
names.Add(mem.input);
}
names.Sort(StringComparer.InvariantCulture);
return names.ToArray();
}
/// <summary>
/// Get the version of the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>The api version of the model</returns>
public static int GetVersion(this Model model)
{
return (int)model.GetTensorByName(TensorNames.VersionNumber)[0];
}
/// <summary>
/// Generates the Tensor inputs that are expected to be present in the Model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>TensorProxy IEnumerable with the expected Tensor inputs.</returns>
public static IReadOnlyList<TensorProxy> GetInputTensors(this Model model)
{
var tensors = new List<TensorProxy>();
if (model == null)
return tensors;
foreach (var input in model.inputs)
{
tensors.Add(new TensorProxy
{
name = input.name,
valueType = TensorProxy.TensorType.FloatingPoint,
data = null,
shape = input.shape.Select(i => (long)i).ToArray()
});
}
tensors.Sort((el1, el2) => string.Compare(el1.name, el2.name, StringComparison.InvariantCulture));
return tensors;
}
/// <summary>
/// Get number of visual observation inputs to the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>Number of visual observation inputs to the model</returns>
public static int GetNumVisualInputs(this Model model)
{
var count = 0;
if (model == null)
return count;
foreach (var input in model.inputs)
{
if (input.name.StartsWith(TensorNames.VisualObservationPlaceholderPrefix))
{
count++;
}
}
return count;
}
/// <summary>
/// Get array of the output tensor names of the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>Array of the output tensor names of the model</returns>
public static string[] GetOutputNames(this Model model, bool deterministicInference = false)
{
var names = new List<string>();
if (model == null)
{
return names.ToArray();
}
if (model.HasContinuousOutputs(deterministicInference))
{
names.Add(model.ContinuousOutputName(deterministicInference));
}
if (model.HasDiscreteOutputs(deterministicInference))
{
names.Add(model.DiscreteOutputName(deterministicInference));
}
var modelVersion = model.GetVersion();
var memory = (int)model.GetTensorByName(TensorNames.MemorySize)[0];
if (memory > 0)
{
names.Add(TensorNames.RecurrentOutput);
}
names.Sort(StringComparer.InvariantCulture);
return names.ToArray();
}
/// <summary>
/// Check if the model has continuous action outputs.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>True if the model has continuous action outputs.</returns>
public static bool HasContinuousOutputs(this Model model, bool deterministicInference = false)
{
if (model == null)
return false;
if (!model.SupportsContinuousAndDiscrete())
{
return (int)model.GetTensorByName(TensorNames.IsContinuousControlDeprecated)[0] > 0;
}
else
{
bool hasStochasticOutput = !deterministicInference &&
model.outputs.Contains(TensorNames.ContinuousActionOutput);
bool hasDeterministicOutput = deterministicInference &&
model.outputs.Contains(TensorNames.DeterministicContinuousActionOutput);
return (hasStochasticOutput || hasDeterministicOutput) &&
(int)model.GetTensorByName(TensorNames.ContinuousActionOutputShape)[0] > 0;
}
}
/// <summary>
/// Continuous action output size of the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>Size of continuous action output.</returns>
public static int ContinuousOutputSize(this Model model)
{
if (model == null)
return 0;
if (!model.SupportsContinuousAndDiscrete())
{
return (int)model.GetTensorByName(TensorNames.IsContinuousControlDeprecated)[0] > 0 ?
(int)model.GetTensorByName(TensorNames.ActionOutputShapeDeprecated)[0] : 0;
}
else
{
var continuousOutputShape = model.GetTensorByName(TensorNames.ContinuousActionOutputShape);
return continuousOutputShape == null ? 0 : (int)continuousOutputShape[0];
}
}
/// <summary>
/// Continuous action output tensor name of the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>Tensor name of continuous action output.</returns>
public static string ContinuousOutputName(this Model model, bool deterministicInference = false)
{
if (model == null)
return null;
if (!model.SupportsContinuousAndDiscrete())
{
return TensorNames.ActionOutputDeprecated;
}
else
{
return deterministicInference ? TensorNames.DeterministicContinuousActionOutput : TensorNames.ContinuousActionOutput;
}
}
/// <summary>
/// Check if the model has discrete action outputs.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>True if the model has discrete action outputs.</returns>
public static bool HasDiscreteOutputs(this Model model, bool deterministicInference = false)
{
if (model == null)
return false;
if (!model.SupportsContinuousAndDiscrete())
{
return (int)model.GetTensorByName(TensorNames.IsContinuousControlDeprecated)[0] == 0;
}
else
{
bool hasStochasticOutput = !deterministicInference &&
model.outputs.Contains(TensorNames.DiscreteActionOutput);
bool hasDeterministicOutput = deterministicInference &&
model.outputs.Contains(TensorNames.DeterministicDiscreteActionOutput);
return (hasStochasticOutput || hasDeterministicOutput) &&
model.DiscreteOutputSize() > 0;
}
}
/// <summary>
/// Discrete action output size of the model. This is equal to the sum of the branch sizes.
/// This method gets the tensor representing the list of branch size and returns the
/// sum of all the elements in the Tensor.
/// - In version 1.X this tensor contains a single number, the sum of all branch
/// size values.
/// - In version 2.X this tensor contains a 1D Tensor with each element corresponding
/// to a branch size.
/// Since this method does the sum of all elements in the tensor, the output
/// will be the same on both 1.X and 2.X.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>Size of discrete action output.</returns>
public static int DiscreteOutputSize(this Model model)
{
if (model == null)
return 0;
if (!model.SupportsContinuousAndDiscrete())
{
return (int)model.GetTensorByName(TensorNames.IsContinuousControlDeprecated)[0] > 0 ?
0 : (int)model.GetTensorByName(TensorNames.ActionOutputShapeDeprecated)[0];
}
else
{
var discreteOutputShape = model.GetTensorByName(TensorNames.DiscreteActionOutputShape);
if (discreteOutputShape == null)
{
return 0;
}
else
{
int result = 0;
for (int i = 0; i < discreteOutputShape.length; i++)
{
result += (int)discreteOutputShape[i];
}
return result;
}
}
}
/// <summary>
/// Discrete action output tensor name of the model.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>Tensor name of discrete action output.</returns>
public static string DiscreteOutputName(this Model model, bool deterministicInference = false)
{
if (model == null)
return null;
if (!model.SupportsContinuousAndDiscrete())
{
return TensorNames.ActionOutputDeprecated;
}
else
{
return deterministicInference ? TensorNames.DeterministicDiscreteActionOutput : TensorNames.DiscreteActionOutput;
}
}
/// <summary>
/// Check if the model supports both continuous and discrete actions.
/// If not, the model should be handled differently and use the deprecated fields.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <returns>True if the model supports both continuous and discrete actions.</returns>
public static bool SupportsContinuousAndDiscrete(this Model model)
{
return model == null ||
model.outputs.Contains(TensorNames.ContinuousActionOutput) ||
model.outputs.Contains(TensorNames.DiscreteActionOutput);
}
/// <summary>
/// Check if the model contains all the expected input/output tensors.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters.
/// </param>
/// <param name="failedModelChecks">Output list of failure messages</param>
///<param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>True if the model contains all the expected tensors.</returns>
/// TODO: add checks for deterministic actions
public static bool CheckExpectedTensors(this Model model, List<FailedCheck> failedModelChecks, bool deterministicInference = false)
{
// Check the presence of model version
var modelApiVersionTensor = model.GetTensorByName(TensorNames.VersionNumber);
if (modelApiVersionTensor == null)
{
failedModelChecks.Add(
FailedCheck.Warning($"Required constant \"{TensorNames.VersionNumber}\" was not found in the model file.")
);
return false;
}
// Check the presence of memory size
var memorySizeTensor = model.GetTensorByName(TensorNames.MemorySize);
if (memorySizeTensor == null)
{
failedModelChecks.Add(
FailedCheck.Warning($"Required constant \"{TensorNames.MemorySize}\" was not found in the model file.")
);
return false;
}
// Check the presence of action output tensor
if (!model.outputs.Contains(TensorNames.ActionOutputDeprecated) &&
!model.outputs.Contains(TensorNames.ContinuousActionOutput) &&
!model.outputs.Contains(TensorNames.DiscreteActionOutput) &&
!model.outputs.Contains(TensorNames.DeterministicContinuousActionOutput) &&
!model.outputs.Contains(TensorNames.DeterministicDiscreteActionOutput))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain any Action Output Node.")
);
return false;
}
// Check the presence of action output shape tensor
if (!model.SupportsContinuousAndDiscrete())
{
if (model.GetTensorByName(TensorNames.ActionOutputShapeDeprecated) == null)
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain any Action Output Shape Node.")
);
return false;
}
if (model.GetTensorByName(TensorNames.IsContinuousControlDeprecated) == null)
{
failedModelChecks.Add(
FailedCheck.Warning($"Required constant \"{TensorNames.IsContinuousControlDeprecated}\" was " +
"not found in the model file. " +
"This is only required for model that uses a deprecated model format.")
);
return false;
}
}
else
{
if (model.outputs.Contains(TensorNames.ContinuousActionOutput))
{
if (model.GetTensorByName(TensorNames.ContinuousActionOutputShape) == null)
{
failedModelChecks.Add(
FailedCheck.Warning("The model uses continuous action but does not contain Continuous Action Output Shape Node.")
);
return false;
}
else if (!model.HasContinuousOutputs(deterministicInference))
{
var actionType = deterministicInference ? "deterministic" : "stochastic";
var actionName = deterministicInference ? "Deterministic" : "";
failedModelChecks.Add(
FailedCheck.Warning($"The model uses {actionType} inference but does not contain {actionName} Continuous Action Output Tensor. Uncheck `Deterministic inference` flag..")
);
return false;
}
}
if (model.outputs.Contains(TensorNames.DiscreteActionOutput))
{
if (model.GetTensorByName(TensorNames.DiscreteActionOutputShape) == null)
{
failedModelChecks.Add(
FailedCheck.Warning("The model uses discrete action but does not contain Discrete Action Output Shape Node.")
);
return false;
}
else if (!model.HasDiscreteOutputs(deterministicInference))
{
var actionType = deterministicInference ? "deterministic" : "stochastic";
var actionName = deterministicInference ? "Deterministic" : "";
failedModelChecks.Add(
FailedCheck.Warning($"The model uses {actionType} inference but does not contain {actionName} Discrete Action Output Tensor. Uncheck `Deterministic inference` flag.")
);
return false;
}
}
}
return true;
}
}
}
|