File size: 41,495 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
using System;
using System.Collections.Generic;
using System.Linq;
using Unity.Barracuda;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Sensors;
using Unity.MLAgents.Policies;
namespace Unity.MLAgents.Inference
{
/// <summary>
/// Prepares the Tensors for the Learning Brain and exposes a list of failed checks if Model
/// and BrainParameters are incompatible.
/// </summary>
internal class BarracudaModelParamLoader
{
internal enum ModelApiVersion
{
/// <summary>
/// ML-Agents model version for versions 1.x.y
/// The observations are split between vector and visual observations
/// There are legacy action outputs for discrete and continuous actions
/// LSTM inputs and outputs are handled by Barracuda
/// </summary>
MLAgents1_0 = 2,
/// <summary>
/// All observations are treated the same and named obs_{i} with i being
/// the sensor index
/// Legacy "action" output is no longer present
/// LSTM inputs and outputs are treated like regular inputs and outputs
/// and no longer managed by Barracuda
/// </summary>
MLAgents2_0 = 3,
MinSupportedVersion = MLAgents1_0,
MaxSupportedVersion = MLAgents2_0
}
internal class FailedCheck
{
public enum CheckTypeEnum
{
Info = 0,
Warning = 1,
Error = 2
}
public CheckTypeEnum CheckType;
public string Message;
public static FailedCheck Info(string message)
{
return new FailedCheck { CheckType = CheckTypeEnum.Info, Message = message };
}
public static FailedCheck Warning(string message)
{
return new FailedCheck { CheckType = CheckTypeEnum.Warning, Message = message };
}
public static FailedCheck Error(string message)
{
return new FailedCheck { CheckType = CheckTypeEnum.Error, Message = message };
}
}
/// <summary>
/// Checks that a model has the appropriate version.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <returns>A FailedCheck containing the error message if the version of the model does not mach, else null</returns>
public static FailedCheck CheckModelVersion(Model model)
{
var modelApiVersion = model.GetVersion();
if (modelApiVersion < (int)ModelApiVersion.MinSupportedVersion)
{
return FailedCheck.Error(
"Model was trained with a older version of the trainer than is supported. " +
"Either retrain with an newer trainer, or use an older version of com.unity.ml-agents.\n" +
$"Model version: {modelApiVersion} Minimum supported version: {(int)ModelApiVersion.MinSupportedVersion}"
);
}
if (modelApiVersion > (int)ModelApiVersion.MaxSupportedVersion)
{
return FailedCheck.Error(
"Model was trained with a newer version of the trainer than is supported. " +
"Either retrain with an older trainer, or update to a newer version of com.unity.ml-agents.\n" +
$"Model version: {modelApiVersion} Maximum supported version: {(int)ModelApiVersion.MaxSupportedVersion}"
);
}
var memorySize = (int)model.GetTensorByName(TensorNames.MemorySize)[0];
if (modelApiVersion == (int)ModelApiVersion.MLAgents1_0 && memorySize > 0)
{
// This block is to make sure that models that are trained with MLAgents version 1.x and have
// an LSTM (i.e. use the barracuda _c and _h inputs and outputs) will not work with MLAgents version
// 2.x. This is because Barracuda version 2.x will eventually drop support for the _c and _h inputs
// and only ML-Agents 2.x models will be compatible.
return FailedCheck.Error(
"Models from com.unity.ml-agents 1.x that use recurrent neural networks are not supported in newer versions. " +
"Either retrain with an newer trainer, or use an older version of com.unity.ml-agents.\n"
);
}
return null;
}
/// <summary>
/// Factory for the ModelParamLoader : Creates a ModelParamLoader and runs the checks
/// on it.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="sensors">Attached sensor components</param>
/// <param name="actuatorComponents">Attached actuator components</param>
/// <param name="observableAttributeTotalSize">Sum of the sizes of all ObservableAttributes.</param>
/// <param name="behaviorType">BehaviorType or the Agent to check.</param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>A IEnumerable of the checks that failed</returns>
public static IEnumerable<FailedCheck> CheckModel(
Model model,
BrainParameters brainParameters,
ISensor[] sensors,
ActuatorComponent[] actuatorComponents,
int observableAttributeTotalSize = 0,
BehaviorType behaviorType = BehaviorType.Default,
bool deterministicInference = false
)
{
List<FailedCheck> failedModelChecks = new List<FailedCheck>();
if (model == null)
{
var errorMsg = "There is no model for this Brain; cannot run inference. ";
if (behaviorType == BehaviorType.InferenceOnly)
{
errorMsg += "Either assign a model, or change to a different Behavior Type.";
}
else
{
errorMsg += "(But can still train)";
}
failedModelChecks.Add(FailedCheck.Info(errorMsg));
return failedModelChecks;
}
var hasExpectedTensors = model.CheckExpectedTensors(failedModelChecks, deterministicInference);
if (!hasExpectedTensors)
{
return failedModelChecks;
}
var modelApiVersion = model.GetVersion();
var versionCheck = CheckModelVersion(model);
if (versionCheck != null)
{
failedModelChecks.Add(versionCheck);
}
var memorySize = (int)model.GetTensorByName(TensorNames.MemorySize)[0];
if (memorySize == -1)
{
failedModelChecks.Add(FailedCheck.Warning($"Missing node in the model provided : {TensorNames.MemorySize}"
));
return failedModelChecks;
}
if (modelApiVersion == (int)ModelApiVersion.MLAgents1_0)
{
failedModelChecks.AddRange(
CheckInputTensorPresenceLegacy(model, brainParameters, memorySize, sensors)
);
failedModelChecks.AddRange(
CheckInputTensorShapeLegacy(model, brainParameters, sensors, observableAttributeTotalSize)
);
}
else if (modelApiVersion == (int)ModelApiVersion.MLAgents2_0)
{
failedModelChecks.AddRange(
CheckInputTensorPresence(model, brainParameters, memorySize, sensors, deterministicInference)
);
failedModelChecks.AddRange(
CheckInputTensorShape(model, brainParameters, sensors, observableAttributeTotalSize)
);
}
failedModelChecks.AddRange(
CheckOutputTensorShape(model, brainParameters, actuatorComponents)
);
failedModelChecks.AddRange(
CheckOutputTensorPresence(model, memorySize, deterministicInference)
);
return failedModelChecks;
}
/// <summary>
/// Generates failed checks that correspond to inputs expected by the model that are not
/// present in the BrainParameters. Tests the models created with the API of version 1.X
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="memory">
/// The memory size that the model is expecting.
/// </param>
/// <param name="sensors">Array of attached sensor components</param>
/// <returns>
/// A IEnumerable of the checks that failed
/// </returns>
static IEnumerable<FailedCheck> CheckInputTensorPresenceLegacy(
Model model,
BrainParameters brainParameters,
int memory,
ISensor[] sensors
)
{
var failedModelChecks = new List<FailedCheck>();
var tensorsNames = model.GetInputNames();
// If there is no Vector Observation Input but the Brain Parameters expect one.
if ((brainParameters.VectorObservationSize != 0) &&
(!tensorsNames.Contains(TensorNames.VectorObservationPlaceholder)))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain a Vector Observation Placeholder Input. " +
"You must set the Vector Observation Space Size to 0.")
);
}
// If there are not enough Visual Observation Input compared to what the
// sensors expect.
var visObsIndex = 0;
for (var sensorIndex = 0; sensorIndex < sensors.Length; sensorIndex++)
{
var sensor = sensors[sensorIndex];
if (sensor.GetObservationSpec().Shape.Length == 3)
{
if (!tensorsNames.Contains(
TensorNames.GetVisualObservationName(visObsIndex)))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain a Visual Observation Placeholder Input " +
$"for sensor component {visObsIndex} ({sensor.GetType().Name}).")
);
}
visObsIndex++;
}
if (sensor.GetObservationSpec().Shape.Length == 2)
{
if (!tensorsNames.Contains(
TensorNames.GetObservationName(sensorIndex)))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain an Observation Placeholder Input " +
$"for sensor component {sensorIndex} ({sensor.GetType().Name}).")
);
}
}
}
var expectedVisualObs = model.GetNumVisualInputs();
// Check if there's not enough visual sensors (too many would be handled above)
if (expectedVisualObs > visObsIndex)
{
failedModelChecks.Add(
FailedCheck.Warning($"The model expects {expectedVisualObs} visual inputs," +
$" but only found {visObsIndex} visual sensors.")
);
}
// If the model has a non-negative memory size but requires a recurrent input
if (memory > 0)
{
if (!tensorsNames.Any(x => x.EndsWith("_h")) ||
!tensorsNames.Any(x => x.EndsWith("_c")))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain a Recurrent Input Node but has memory_size.")
);
}
}
// If the model uses discrete control but does not have an input for action masks
if (model.HasDiscreteOutputs())
{
if (!tensorsNames.Contains(TensorNames.ActionMaskPlaceholder))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain an Action Mask but is using Discrete Control.")
);
}
}
return failedModelChecks;
}
/// <summary>
/// Generates failed checks that correspond to inputs expected by the model that are not
/// present in the BrainParameters.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="memory">
/// The memory size that the model is expecting.
/// </param>
/// <param name="sensors">Array of attached sensor components</param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// Deterministic. </param>
/// <returns>
/// A IEnumerable of the checks that failed
/// </returns>
static IEnumerable<FailedCheck> CheckInputTensorPresence(
Model model,
BrainParameters brainParameters,
int memory,
ISensor[] sensors,
bool deterministicInference = false
)
{
var failedModelChecks = new List<FailedCheck>();
var tensorsNames = model.GetInputNames();
for (var sensorIndex = 0; sensorIndex < sensors.Length; sensorIndex++)
{
if (!tensorsNames.Contains(
TensorNames.GetObservationName(sensorIndex)))
{
var sensor = sensors[sensorIndex];
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain an Observation Placeholder Input " +
$"for sensor component {sensorIndex} ({sensor.GetType().Name}).")
);
}
}
// If the model has a non-negative memory size but requires a recurrent input
if (memory > 0)
{
var modelVersion = model.GetVersion();
if (!tensorsNames.Any(x => x == TensorNames.RecurrentInPlaceholder))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain a Recurrent Input Node but has memory_size.")
);
}
}
// If the model uses discrete control but does not have an input for action masks
if (model.HasDiscreteOutputs(deterministicInference))
{
if (!tensorsNames.Contains(TensorNames.ActionMaskPlaceholder))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain an Action Mask but is using Discrete Control.")
);
}
}
return failedModelChecks;
}
/// <summary>
/// Generates failed checks that correspond to outputs expected by the model that are not
/// present in the BrainParameters.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="memory">The memory size that the model is expecting/</param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <returns>
/// A IEnumerable of the checks that failed
/// </returns>
static IEnumerable<FailedCheck> CheckOutputTensorPresence(Model model, int memory, bool deterministicInference = false)
{
var failedModelChecks = new List<FailedCheck>();
// If there is no Recurrent Output but the model is Recurrent.
if (memory > 0)
{
var allOutputs = model.GetOutputNames(deterministicInference).ToList();
if (!allOutputs.Any(x => x == TensorNames.RecurrentOutput))
{
failedModelChecks.Add(
FailedCheck.Warning("The model does not contain a Recurrent Output Node but has memory_size.")
);
}
}
return failedModelChecks;
}
/// <summary>
/// Checks that the shape of the visual observation input placeholder is the same as the corresponding sensor.
/// </summary>
/// <param name="tensorProxy">The tensor that is expected by the model</param>
/// <param name="sensor">The sensor that produces the visual observation.</param>
/// <returns>
/// If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.
/// </returns>
static FailedCheck CheckVisualObsShape(
TensorProxy tensorProxy, ISensor sensor)
{
var shape = sensor.GetObservationSpec().Shape;
var heightBp = shape[0];
var widthBp = shape[1];
var pixelBp = shape[2];
var heightT = tensorProxy.Height;
var widthT = tensorProxy.Width;
var pixelT = tensorProxy.Channels;
if ((widthBp != widthT) || (heightBp != heightT) || (pixelBp != pixelT))
{
return FailedCheck.Warning($"The visual Observation of the model does not match. " +
$"Received TensorProxy of shape [?x{widthBp}x{heightBp}x{pixelBp}] but " +
$"was expecting [?x{widthT}x{heightT}x{pixelT}] for the {sensor.GetName()} Sensor."
);
}
return null;
}
/// <summary>
/// Checks that the shape of the rank 2 observation input placeholder is the same as the corresponding sensor.
/// </summary>
/// <param name="tensorProxy">The tensor that is expected by the model</param>
/// <param name="sensor">The sensor that produces the visual observation.</param>
/// <returns>
/// If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.
/// </returns>
static FailedCheck CheckRankTwoObsShape(
TensorProxy tensorProxy, ISensor sensor)
{
var shape = sensor.GetObservationSpec().Shape;
var dim1Bp = shape[0];
var dim2Bp = shape[1];
var dim1T = tensorProxy.Channels;
var dim2T = tensorProxy.Width;
var dim3T = tensorProxy.Height;
if ((dim1Bp != dim1T) || (dim2Bp != dim2T))
{
var proxyDimStr = $"[?x{dim1T}x{dim2T}]";
if (dim3T > 1)
{
proxyDimStr = $"[?x{dim3T}x{dim2T}x{dim1T}]";
}
return FailedCheck.Warning($"An Observation of the model does not match. " +
$"Received TensorProxy of shape [?x{dim1Bp}x{dim2Bp}] but " +
$"was expecting {proxyDimStr} for the {sensor.GetName()} Sensor."
);
}
return null;
}
/// <summary>
/// Checks that the shape of the rank 2 observation input placeholder is the same as the corresponding sensor.
/// </summary>
/// <param name="tensorProxy">The tensor that is expected by the model</param>
/// <param name="sensor">The sensor that produces the visual observation.</param>
/// <returns>
/// If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.
/// </returns>
static FailedCheck CheckRankOneObsShape(
TensorProxy tensorProxy, ISensor sensor)
{
var shape = sensor.GetObservationSpec().Shape;
var dim1Bp = shape[0];
var dim1T = tensorProxy.Channels;
var dim2T = tensorProxy.Width;
var dim3T = tensorProxy.Height;
if ((dim1Bp != dim1T))
{
var proxyDimStr = $"[?x{dim1T}]";
if (dim2T > 1)
{
proxyDimStr = $"[?x{dim1T}x{dim2T}]";
}
if (dim3T > 1)
{
proxyDimStr = $"[?x{dim3T}x{dim2T}x{dim1T}]";
}
return FailedCheck.Warning($"An Observation of the model does not match. " +
$"Received TensorProxy of shape [?x{dim1Bp}] but " +
$"was expecting {proxyDimStr} for the {sensor.GetName()} Sensor."
);
}
return null;
}
/// <summary>
/// Generates failed checks that correspond to inputs shapes incompatibilities between
/// the model and the BrainParameters. Tests the models created with the API of version 1.X
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="sensors">Attached sensors</param>
/// <param name="observableAttributeTotalSize">Sum of the sizes of all ObservableAttributes.</param>
/// <returns>A IEnumerable of the checks that failed</returns>
static IEnumerable<FailedCheck> CheckInputTensorShapeLegacy(
Model model, BrainParameters brainParameters, ISensor[] sensors,
int observableAttributeTotalSize)
{
var failedModelChecks = new List<FailedCheck>();
var tensorTester =
new Dictionary<string, Func<BrainParameters, TensorProxy, ISensor[], int, FailedCheck>>()
{
{TensorNames.VectorObservationPlaceholder, CheckVectorObsShapeLegacy},
{TensorNames.PreviousActionPlaceholder, CheckPreviousActionShape},
{TensorNames.RandomNormalEpsilonPlaceholder, ((bp, tensor, scs, i) => null)},
{TensorNames.ActionMaskPlaceholder, ((bp, tensor, scs, i) => null)},
{TensorNames.SequenceLengthPlaceholder, ((bp, tensor, scs, i) => null)},
{TensorNames.RecurrentInPlaceholder, ((bp, tensor, scs, i) => null)},
};
foreach (var mem in model.memories)
{
tensorTester[mem.input] = ((bp, tensor, scs, i) => null);
}
var visObsIndex = 0;
for (var sensorIndex = 0; sensorIndex < sensors.Length; sensorIndex++)
{
var sens = sensors[sensorIndex];
if (sens.GetObservationSpec().Shape.Length == 3)
{
tensorTester[TensorNames.GetVisualObservationName(visObsIndex)] =
(bp, tensor, scs, i) => CheckVisualObsShape(tensor, sens);
visObsIndex++;
}
if (sens.GetObservationSpec().Shape.Length == 2)
{
tensorTester[TensorNames.GetObservationName(sensorIndex)] =
(bp, tensor, scs, i) => CheckRankTwoObsShape(tensor, sens);
}
}
// If the model expects an input but it is not in this list
foreach (var tensor in model.GetInputTensors())
{
if (!tensorTester.ContainsKey(tensor.name))
{
if (!tensor.name.Contains("visual_observation"))
{
failedModelChecks.Add(
FailedCheck.Warning("Model contains an unexpected input named : " + tensor.name)
);
}
}
else
{
var tester = tensorTester[tensor.name];
var error = tester.Invoke(brainParameters, tensor, sensors, observableAttributeTotalSize);
if (error != null)
{
failedModelChecks.Add(error);
}
}
}
return failedModelChecks;
}
/// <summary>
/// Checks that the shape of the Vector Observation input placeholder is the same in the
/// model and in the Brain Parameters. Tests the models created with the API of version 1.X
/// </summary>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="tensorProxy">The tensor that is expected by the model</param>
/// <param name="sensors">Array of attached sensor components</param>
/// <param name="observableAttributeTotalSize">Sum of the sizes of all ObservableAttributes.</param>
/// <returns>
/// If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.
/// </returns>
static FailedCheck CheckVectorObsShapeLegacy(
BrainParameters brainParameters, TensorProxy tensorProxy, ISensor[] sensors,
int observableAttributeTotalSize)
{
var vecObsSizeBp = brainParameters.VectorObservationSize;
var numStackedVector = brainParameters.NumStackedVectorObservations;
var totalVecObsSizeT = tensorProxy.shape[tensorProxy.shape.Length - 1];
var totalVectorSensorSize = 0;
foreach (var sens in sensors)
{
if ((sens.GetObservationSpec().Shape.Length == 1))
{
totalVectorSensorSize += sens.GetObservationSpec().Shape[0];
}
}
if (totalVectorSensorSize != totalVecObsSizeT)
{
var sensorSizes = "";
foreach (var sensorComp in sensors)
{
if (sensorComp.GetObservationSpec().Shape.Length == 1)
{
var vecSize = sensorComp.GetObservationSpec().Shape[0];
if (sensorSizes.Length == 0)
{
sensorSizes = $"[{vecSize}";
}
else
{
sensorSizes += $", {vecSize}";
}
}
}
sensorSizes += "]";
return FailedCheck.Warning(
$"Vector Observation Size of the model does not match. Was expecting {totalVecObsSizeT} " +
$"but received: \n" +
$"Vector observations: {vecObsSizeBp} x {numStackedVector}\n" +
$"Total [Observable] attributes: {observableAttributeTotalSize}\n" +
$"Sensor sizes: {sensorSizes}."
);
}
return null;
}
/// <summary>
/// Generates failed checks that correspond to inputs shapes incompatibilities between
/// the model and the BrainParameters.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="sensors">Attached sensors</param>
/// <param name="observableAttributeTotalSize">Sum of the sizes of all ObservableAttributes.</param>
/// <returns>A IEnumerable of the checks that failed</returns>
static IEnumerable<FailedCheck> CheckInputTensorShape(
Model model, BrainParameters brainParameters, ISensor[] sensors,
int observableAttributeTotalSize)
{
var failedModelChecks = new List<FailedCheck>();
var tensorTester =
new Dictionary<string, Func<BrainParameters, TensorProxy, ISensor[], int, FailedCheck>>()
{
{TensorNames.PreviousActionPlaceholder, CheckPreviousActionShape},
{TensorNames.RandomNormalEpsilonPlaceholder, ((bp, tensor, scs, i) => null)},
{TensorNames.ActionMaskPlaceholder, ((bp, tensor, scs, i) => null)},
{TensorNames.SequenceLengthPlaceholder, ((bp, tensor, scs, i) => null)},
{TensorNames.RecurrentInPlaceholder, ((bp, tensor, scs, i) => null)},
};
foreach (var mem in model.memories)
{
tensorTester[mem.input] = ((bp, tensor, scs, i) => null);
}
for (var sensorIndex = 0; sensorIndex < sensors.Length; sensorIndex++)
{
var sens = sensors[sensorIndex];
if (sens.GetObservationSpec().Rank == 3)
{
tensorTester[TensorNames.GetObservationName(sensorIndex)] =
(bp, tensor, scs, i) => CheckVisualObsShape(tensor, sens);
}
if (sens.GetObservationSpec().Rank == 2)
{
tensorTester[TensorNames.GetObservationName(sensorIndex)] =
(bp, tensor, scs, i) => CheckRankTwoObsShape(tensor, sens);
}
if (sens.GetObservationSpec().Rank == 1)
{
tensorTester[TensorNames.GetObservationName(sensorIndex)] =
(bp, tensor, scs, i) => CheckRankOneObsShape(tensor, sens);
}
}
// If the model expects an input but it is not in this list
foreach (var tensor in model.GetInputTensors())
{
if (!tensorTester.ContainsKey(tensor.name))
{
failedModelChecks.Add(FailedCheck.Warning("Model contains an unexpected input named : " + tensor.name
));
}
else
{
var tester = tensorTester[tensor.name];
var error = tester.Invoke(brainParameters, tensor, sensors, observableAttributeTotalSize);
if (error != null)
{
failedModelChecks.Add(error);
}
}
}
return failedModelChecks;
}
/// <summary>
/// Checks that the shape of the Previous Vector Action input placeholder is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="tensorProxy"> The tensor that is expected by the model</param>
/// <param name="sensors">Array of attached sensor components (unused).</param>
/// <param name="observableAttributeTotalSize">Sum of the sizes of all ObservableAttributes (unused).</param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
static FailedCheck CheckPreviousActionShape(
BrainParameters brainParameters, TensorProxy tensorProxy,
ISensor[] sensors, int observableAttributeTotalSize)
{
var numberActionsBp = brainParameters.ActionSpec.NumDiscreteActions;
var numberActionsT = tensorProxy.shape[tensorProxy.shape.Length - 1];
if (numberActionsBp != numberActionsT)
{
return FailedCheck.Warning("Previous Action Size of the model does not match. " +
$"Received {numberActionsBp} but was expecting {numberActionsT}."
);
}
return null;
}
/// <summary>
/// Generates failed checks that correspond to output shapes incompatibilities between
/// the model and the BrainParameters.
/// </summary>
/// <param name="model">
/// The Barracuda engine model for loading static parameters
/// </param>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="actuatorComponents">Array of attached actuator components.</param>
/// <returns>
/// A IEnumerable of error messages corresponding to the incompatible shapes between model
/// and BrainParameters.
/// </returns>
static IEnumerable<FailedCheck> CheckOutputTensorShape(
Model model,
BrainParameters brainParameters,
ActuatorComponent[] actuatorComponents)
{
var failedModelChecks = new List<FailedCheck>();
// If the model expects an output but it is not in this list
var modelContinuousActionSize = model.ContinuousOutputSize();
var continuousError = CheckContinuousActionOutputShape(brainParameters, actuatorComponents, modelContinuousActionSize);
if (continuousError != null)
{
failedModelChecks.Add(continuousError);
}
FailedCheck discreteError = null;
var modelApiVersion = model.GetVersion();
if (modelApiVersion == (int)ModelApiVersion.MLAgents1_0)
{
var modelSumDiscreteBranchSizes = model.DiscreteOutputSize();
discreteError = CheckDiscreteActionOutputShapeLegacy(brainParameters, actuatorComponents, modelSumDiscreteBranchSizes);
}
if (modelApiVersion == (int)ModelApiVersion.MLAgents2_0)
{
var modelDiscreteBranches = model.GetTensorByName(TensorNames.DiscreteActionOutputShape);
discreteError = CheckDiscreteActionOutputShape(brainParameters, actuatorComponents, modelDiscreteBranches);
}
if (discreteError != null)
{
failedModelChecks.Add(discreteError);
}
return failedModelChecks;
}
/// <summary>
/// Checks that the shape of the discrete action output is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="actuatorComponents">Array of attached actuator components.</param>
/// <param name="modelDiscreteBranches"> The Tensor of branch sizes.
/// </param>
/// <returns>
/// If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.
/// </returns>
static FailedCheck CheckDiscreteActionOutputShape(
BrainParameters brainParameters, ActuatorComponent[] actuatorComponents, Tensor modelDiscreteBranches)
{
var discreteActionBranches = brainParameters.ActionSpec.BranchSizes.ToList();
foreach (var actuatorComponent in actuatorComponents)
{
var actionSpec = actuatorComponent.ActionSpec;
discreteActionBranches.AddRange(actionSpec.BranchSizes);
}
int modelDiscreteBranchesLength = modelDiscreteBranches?.length ?? 0;
if (modelDiscreteBranchesLength != discreteActionBranches.Count)
{
return FailedCheck.Warning("Discrete Action Size of the model does not match. The BrainParameters expect " +
$"{discreteActionBranches.Count} branches but the model contains {modelDiscreteBranchesLength}."
);
}
for (int i = 0; i < modelDiscreteBranchesLength; i++)
{
if (modelDiscreteBranches != null && modelDiscreteBranches[i] != discreteActionBranches[i])
{
return FailedCheck.Warning($"The number of Discrete Actions of branch {i} does not match. " +
$"Was expecting {discreteActionBranches[i]} but the model contains {modelDiscreteBranches[i]} "
);
}
}
return null;
}
/// <summary>
/// Checks that the shape of the discrete action output is the same in the
/// model and in the Brain Parameters. Tests the models created with the API of version 1.X
/// </summary>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="actuatorComponents">Array of attached actuator components.</param>
/// <param name="modelSumDiscreteBranchSizes">
/// The size of the discrete action output that is expected by the model.
/// </param>
/// <returns>
/// If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.
/// </returns>
static FailedCheck CheckDiscreteActionOutputShapeLegacy(
BrainParameters brainParameters, ActuatorComponent[] actuatorComponents, int modelSumDiscreteBranchSizes)
{
// TODO: check each branch size instead of sum of branch sizes
var sumOfDiscreteBranchSizes = brainParameters.ActionSpec.SumOfDiscreteBranchSizes;
foreach (var actuatorComponent in actuatorComponents)
{
var actionSpec = actuatorComponent.ActionSpec;
sumOfDiscreteBranchSizes += actionSpec.SumOfDiscreteBranchSizes;
}
if (modelSumDiscreteBranchSizes != sumOfDiscreteBranchSizes)
{
return FailedCheck.Warning("Discrete Action Size of the model does not match. The BrainParameters expect " +
$"{sumOfDiscreteBranchSizes} but the model contains {modelSumDiscreteBranchSizes}."
);
}
return null;
}
/// <summary>
/// Checks that the shape of the continuous action output is the same in the
/// model and in the Brain Parameters.
/// </summary>
/// <param name="brainParameters">
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
/// </param>
/// <param name="actuatorComponents">Array of attached actuator components.</param>
/// <param name="modelContinuousActionSize">
/// The size of the continuous action output that is expected by the model.
/// </param>
/// <returns>If the Check failed, returns a string containing information about why the
/// check failed. If the check passed, returns null.</returns>
static FailedCheck CheckContinuousActionOutputShape(
BrainParameters brainParameters, ActuatorComponent[] actuatorComponents, int modelContinuousActionSize)
{
var numContinuousActions = brainParameters.ActionSpec.NumContinuousActions;
foreach (var actuatorComponent in actuatorComponents)
{
var actionSpec = actuatorComponent.ActionSpec;
numContinuousActions += actionSpec.NumContinuousActions;
}
if (modelContinuousActionSize != numContinuousActions)
{
return FailedCheck.Warning(
"Continuous Action Size of the model does not match. The BrainParameters and ActuatorComponents expect " +
$"{numContinuousActions} but the model contains {modelContinuousActionSize}."
);
}
return null;
}
}
}
|