File size: 9,289 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
using System.Collections.Generic;
using Unity.Barracuda;
using UnityEngine.Profiling;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Policies;
using Unity.MLAgents.Sensors;
namespace Unity.MLAgents.Inference
{
internal struct AgentInfoSensorsPair
{
public AgentInfo agentInfo;
public List<ISensor> sensors;
}
internal class ModelRunner
{
List<AgentInfoSensorsPair> m_Infos = new List<AgentInfoSensorsPair>();
Dictionary<int, ActionBuffers> m_LastActionsReceived = new Dictionary<int, ActionBuffers>();
List<int> m_OrderedAgentsRequestingDecisions = new List<int>();
ITensorAllocator m_TensorAllocator;
TensorGenerator m_TensorGenerator;
TensorApplier m_TensorApplier;
NNModel m_Model;
string m_ModelName;
InferenceDevice m_InferenceDevice;
IWorker m_Engine;
bool m_Verbose = false;
bool m_DeterministicInference;
string[] m_OutputNames;
IReadOnlyList<TensorProxy> m_InferenceInputs;
List<TensorProxy> m_InferenceOutputs;
Dictionary<string, Tensor> m_InputsByName;
Dictionary<int, List<float>> m_Memories = new Dictionary<int, List<float>>();
SensorShapeValidator m_SensorShapeValidator = new SensorShapeValidator();
bool m_ObservationsInitialized;
/// <summary>
/// Initializes the Brain with the Model that it will use when selecting actions for
/// the agents
/// </summary>
/// <param name="model"> The Barracuda model to load </param>
/// <param name="actionSpec"> Description of the actions for the Agent.</param>
/// <param name="inferenceDevice"> Inference execution device. CPU is the fastest
/// option for most of ML Agents models. </param>
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
/// and Multinomial objects used when running inference.</param>
/// <param name="deterministicInference"> Inference only: set to true if the action selection from model should be
/// deterministic. </param>
/// <exception cref="UnityAgentsException">Throws an error when the model is null
/// </exception>
public ModelRunner(
NNModel model,
ActionSpec actionSpec,
InferenceDevice inferenceDevice,
int seed = 0,
bool deterministicInference = false)
{
Model barracudaModel;
m_Model = model;
m_ModelName = model?.name;
m_InferenceDevice = inferenceDevice;
m_DeterministicInference = deterministicInference;
m_TensorAllocator = new TensorCachingAllocator();
if (model != null)
{
#if BARRACUDA_VERBOSE
m_Verbose = true;
#endif
D.logEnabled = m_Verbose;
barracudaModel = ModelLoader.Load(model);
var failedCheck = BarracudaModelParamLoader.CheckModelVersion(
barracudaModel
);
if (failedCheck != null)
{
if (failedCheck.CheckType == BarracudaModelParamLoader.FailedCheck.CheckTypeEnum.Error)
{
throw new UnityAgentsException(failedCheck.Message);
}
}
WorkerFactory.Type executionDevice;
switch (inferenceDevice)
{
case InferenceDevice.CPU:
executionDevice = WorkerFactory.Type.CSharp;
break;
case InferenceDevice.GPU:
executionDevice = WorkerFactory.Type.ComputePrecompiled;
break;
case InferenceDevice.Burst:
executionDevice = WorkerFactory.Type.CSharpBurst;
break;
case InferenceDevice.Default: // fallthrough
default:
executionDevice = WorkerFactory.Type.CSharpBurst;
break;
}
m_Engine = WorkerFactory.CreateWorker(executionDevice, barracudaModel, m_Verbose);
}
else
{
barracudaModel = null;
m_Engine = null;
}
m_InferenceInputs = barracudaModel.GetInputTensors();
m_OutputNames = barracudaModel.GetOutputNames(m_DeterministicInference);
m_TensorGenerator = new TensorGenerator(
seed, m_TensorAllocator, m_Memories, barracudaModel, m_DeterministicInference);
m_TensorApplier = new TensorApplier(
actionSpec, seed, m_TensorAllocator, m_Memories, barracudaModel, m_DeterministicInference);
m_InputsByName = new Dictionary<string, Tensor>();
m_InferenceOutputs = new List<TensorProxy>();
}
public InferenceDevice InferenceDevice
{
get { return m_InferenceDevice; }
}
public NNModel Model
{
get { return m_Model; }
}
void PrepareBarracudaInputs(IReadOnlyList<TensorProxy> infInputs)
{
m_InputsByName.Clear();
for (var i = 0; i < infInputs.Count; i++)
{
var inp = infInputs[i];
m_InputsByName[inp.name] = inp.data;
}
}
public void Dispose()
{
if (m_Engine != null)
m_Engine.Dispose();
m_TensorAllocator?.Reset(false);
}
void FetchBarracudaOutputs(string[] names)
{
m_InferenceOutputs.Clear();
foreach (var n in names)
{
var output = m_Engine.PeekOutput(n);
m_InferenceOutputs.Add(TensorUtils.TensorProxyFromBarracuda(output, n));
}
}
public void PutObservations(AgentInfo info, List<ISensor> sensors)
{
#if DEBUG
m_SensorShapeValidator.ValidateSensors(sensors);
#endif
m_Infos.Add(new AgentInfoSensorsPair
{
agentInfo = info,
sensors = sensors
});
// We add the episodeId to this list to maintain the order in which the decisions were requested
m_OrderedAgentsRequestingDecisions.Add(info.episodeId);
if (!m_LastActionsReceived.ContainsKey(info.episodeId))
{
m_LastActionsReceived[info.episodeId] = ActionBuffers.Empty;
}
if (info.done)
{
// If the agent is done, we remove the key from the last action dictionary since no action
// should be taken.
m_LastActionsReceived.Remove(info.episodeId);
}
}
public void DecideBatch()
{
var currentBatchSize = m_Infos.Count;
if (currentBatchSize == 0)
{
return;
}
if (!m_ObservationsInitialized)
{
// Just grab the first agent in the collection (any will suffice, really).
// We check for an empty Collection above, so this will always return successfully.
var firstInfo = m_Infos[0];
m_TensorGenerator.InitializeObservations(firstInfo.sensors, m_TensorAllocator);
m_ObservationsInitialized = true;
}
Profiler.BeginSample("ModelRunner.DecideAction");
Profiler.BeginSample(m_ModelName);
Profiler.BeginSample($"GenerateTensors");
// Prepare the input tensors to be feed into the engine
m_TensorGenerator.GenerateTensors(m_InferenceInputs, currentBatchSize, m_Infos);
Profiler.EndSample();
Profiler.BeginSample($"PrepareBarracudaInputs");
PrepareBarracudaInputs(m_InferenceInputs);
Profiler.EndSample();
// Execute the Model
Profiler.BeginSample($"ExecuteGraph");
m_Engine.Execute(m_InputsByName);
Profiler.EndSample();
Profiler.BeginSample($"FetchBarracudaOutputs");
FetchBarracudaOutputs(m_OutputNames);
Profiler.EndSample();
Profiler.BeginSample($"ApplyTensors");
// Update the outputs
m_TensorApplier.ApplyTensors(m_InferenceOutputs, m_OrderedAgentsRequestingDecisions, m_LastActionsReceived);
Profiler.EndSample();
Profiler.EndSample(); // end name
Profiler.EndSample(); // end ModelRunner.DecideAction
m_Infos.Clear();
m_OrderedAgentsRequestingDecisions.Clear();
}
public bool HasModel(NNModel other, InferenceDevice otherInferenceDevice)
{
return m_Model == other && m_InferenceDevice == otherInferenceDevice;
}
public ActionBuffers GetAction(int agentId)
{
if (m_LastActionsReceived.ContainsKey(agentId))
{
return m_LastActionsReceived[agentId];
}
return ActionBuffers.Empty;
}
}
}
|