File size: 12,065 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
using System;
using System.Collections.Generic;
using Unity.Barracuda;
using Unity.MLAgents.Inference;
using UnityEngine;
namespace Unity.MLAgents.Sensors
{
/// <summary>
/// Allows sensors to write to both TensorProxy and float arrays/lists.
/// </summary>
public class ObservationWriter
{
IList<float> m_Data;
int m_Offset;
TensorProxy m_Proxy;
int m_Batch;
TensorShape m_TensorShape;
public ObservationWriter() { }
/// <summary>
/// Set the writer to write to an IList at the given channelOffset.
/// </summary>
/// <param name="data">Float array or list that will be written to.</param>
/// <param name="observationSpec">ObservationSpec of the observation to be written</param>
/// <param name="offset">Offset from the start of the float data to write to.</param>
internal void SetTarget(IList<float> data, ObservationSpec observationSpec, int offset)
{
SetTarget(data, observationSpec.Shape, offset);
}
/// <summary>
/// Set the writer to write to an IList at the given channelOffset.
/// </summary>
/// <param name="data">Float array or list that will be written to.</param>
/// <param name="shape">Shape of the observations to be written.</param>
/// <param name="offset">Offset from the start of the float data to write to.</param>
internal void SetTarget(IList<float> data, InplaceArray<int> shape, int offset)
{
m_Data = data;
m_Offset = offset;
m_Proxy = null;
m_Batch = 0;
if (shape.Length == 1)
{
m_TensorShape = new TensorShape(m_Batch, shape[0]);
}
else if (shape.Length == 2)
{
m_TensorShape = new TensorShape(new[] { m_Batch, 1, shape[0], shape[1] });
}
else
{
m_TensorShape = new TensorShape(m_Batch, shape[0], shape[1], shape[2]);
}
}
/// <summary>
/// Set the writer to write to a TensorProxy at the given batch and channel offset.
/// </summary>
/// <param name="tensorProxy">Tensor proxy that will be written to.</param>
/// <param name="batchIndex">Batch index in the tensor proxy (i.e. the index of the Agent).</param>
/// <param name="channelOffset">Offset from the start of the channel to write to.</param>
internal void SetTarget(TensorProxy tensorProxy, int batchIndex, int channelOffset)
{
m_Proxy = tensorProxy;
m_Batch = batchIndex;
m_Offset = channelOffset;
m_Data = null;
m_TensorShape = m_Proxy.data.shape;
}
/// <summary>
/// 1D write access at a specified index. Use AddList if possible instead.
/// </summary>
/// <param name="index">Index to write to.</param>
public float this[int index]
{
set
{
if (m_Data != null)
{
m_Data[index + m_Offset] = value;
}
else
{
m_Proxy.data[m_Batch, index + m_Offset] = value;
}
}
}
/// <summary>
/// 3D write access at the specified height, width, and channel.
/// </summary>
/// <param name="h"></param>
/// <param name="w"></param>
/// <param name="ch"></param>
public float this[int h, int w, int ch]
{
set
{
if (m_Data != null)
{
if (h < 0 || h >= m_TensorShape.height)
{
throw new IndexOutOfRangeException($"height value {h} must be in range [0, {m_TensorShape.height - 1}]");
}
if (w < 0 || w >= m_TensorShape.width)
{
throw new IndexOutOfRangeException($"width value {w} must be in range [0, {m_TensorShape.width - 1}]");
}
if (ch < 0 || ch >= m_TensorShape.channels)
{
throw new IndexOutOfRangeException($"channel value {ch} must be in range [0, {m_TensorShape.channels - 1}]");
}
var index = m_TensorShape.Index(m_Batch, h, w, ch + m_Offset);
m_Data[index] = value;
}
else
{
m_Proxy.data[m_Batch, h, w, ch + m_Offset] = value;
}
}
}
/// <summary>
/// Write the list of floats.
/// </summary>
/// <param name="data">The actual list of floats to write.</param>
/// <param name="writeOffset">Optional write offset to start writing from.</param>
public void AddList(IList<float> data, int writeOffset = 0)
{
if (m_Data != null)
{
for (var index = 0; index < data.Count; index++)
{
var val = data[index];
m_Data[index + m_Offset + writeOffset] = val;
}
}
else
{
for (var index = 0; index < data.Count; index++)
{
var val = data[index];
m_Proxy.data[m_Batch, index + m_Offset + writeOffset] = val;
}
}
}
/// <summary>
/// Write the Vector3 components.
/// </summary>
/// <param name="vec">The Vector3 to be written.</param>
/// <param name="writeOffset">Optional write offset.</param>
public void Add(Vector3 vec, int writeOffset = 0)
{
if (m_Data != null)
{
m_Data[m_Offset + writeOffset + 0] = vec.x;
m_Data[m_Offset + writeOffset + 1] = vec.y;
m_Data[m_Offset + writeOffset + 2] = vec.z;
}
else
{
m_Proxy.data[m_Batch, m_Offset + writeOffset + 0] = vec.x;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 1] = vec.y;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 2] = vec.z;
}
}
/// <summary>
/// Write the Vector4 components.
/// </summary>
/// <param name="vec">The Vector4 to be written.</param>
/// <param name="writeOffset">Optional write offset.</param>
public void Add(Vector4 vec, int writeOffset = 0)
{
if (m_Data != null)
{
m_Data[m_Offset + writeOffset + 0] = vec.x;
m_Data[m_Offset + writeOffset + 1] = vec.y;
m_Data[m_Offset + writeOffset + 2] = vec.z;
m_Data[m_Offset + writeOffset + 3] = vec.w;
}
else
{
m_Proxy.data[m_Batch, m_Offset + writeOffset + 0] = vec.x;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 1] = vec.y;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 2] = vec.z;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 3] = vec.w;
}
}
/// <summary>
/// Write the Quaternion components.
/// </summary>
/// <param name="quat">The Quaternion to be written.</param>
/// <param name="writeOffset">Optional write offset.</param>
public void Add(Quaternion quat, int writeOffset = 0)
{
if (m_Data != null)
{
m_Data[m_Offset + writeOffset + 0] = quat.x;
m_Data[m_Offset + writeOffset + 1] = quat.y;
m_Data[m_Offset + writeOffset + 2] = quat.z;
m_Data[m_Offset + writeOffset + 3] = quat.w;
}
else
{
m_Proxy.data[m_Batch, m_Offset + writeOffset + 0] = quat.x;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 1] = quat.y;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 2] = quat.z;
m_Proxy.data[m_Batch, m_Offset + writeOffset + 3] = quat.w;
}
}
}
/// <summary>
/// Provides extension methods for the ObservationWriter.
/// </summary>
public static class ObservationWriterExtension
{
/// <summary>
/// Writes a Texture2D into a ObservationWriter.
/// </summary>
/// <param name="obsWriter">
/// Writer to fill with Texture data.
/// </param>
/// <param name="texture">
/// The texture to be put into the tensor.
/// </param>
/// <param name="grayScale">
/// If set to <c>true</c> the textures will be converted to grayscale before
/// being stored in the tensor.
/// </param>
/// <returns>The number of floats written</returns>
public static int WriteTexture(
this ObservationWriter obsWriter,
Texture2D texture,
bool grayScale)
{
if (texture.format == TextureFormat.RGB24)
{
return obsWriter.WriteTextureRGB24(texture, grayScale);
}
var width = texture.width;
var height = texture.height;
var texturePixels = texture.GetPixels32();
// During training, we convert from Texture to PNG before sending to the trainer, which has the
// effect of flipping the image. We need another flip here at inference time to match this.
for (var h = height - 1; h >= 0; h--)
{
for (var w = 0; w < width; w++)
{
var currentPixel = texturePixels[(height - h - 1) * width + w];
if (grayScale)
{
obsWriter[h, w, 0] =
(currentPixel.r + currentPixel.g + currentPixel.b) / 3f / 255.0f;
}
else
{
// For Color32, the r, g and b values are between 0 and 255.
obsWriter[h, w, 0] = currentPixel.r / 255.0f;
obsWriter[h, w, 1] = currentPixel.g / 255.0f;
obsWriter[h, w, 2] = currentPixel.b / 255.0f;
}
}
}
return height * width * (grayScale ? 1 : 3);
}
internal static int WriteTextureRGB24(
this ObservationWriter obsWriter,
Texture2D texture,
bool grayScale
)
{
var width = texture.width;
var height = texture.height;
var rawBytes = texture.GetRawTextureData<byte>();
// During training, we convert from Texture to PNG before sending to the trainer, which has the
// effect of flipping the image. We need another flip here at inference time to match this.
for (var h = height - 1; h >= 0; h--)
{
for (var w = 0; w < width; w++)
{
var offset = (height - h - 1) * width + w;
var r = rawBytes[3 * offset];
var g = rawBytes[3 * offset + 1];
var b = rawBytes[3 * offset + 2];
if (grayScale)
{
obsWriter[h, w, 0] = (r + g + b) / 3f / 255.0f;
}
else
{
// For Color32, the r, g and b values are between 0 and 255.
obsWriter[h, w, 0] = r / 255.0f;
obsWriter[h, w, 1] = g / 255.0f;
obsWriter[h, w, 2] = b / 255.0f;
}
}
}
return height * width * (grayScale ? 1 : 3);
}
}
}
|