File size: 25,668 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
using System;
using System.Collections.Generic;
using Unity.Collections;
using Unity.Jobs;
using UnityEngine;

namespace Unity.MLAgents.Sensors
{
    /// <summary>
    /// Determines which dimensions the sensor will perform the casts in.
    /// </summary>
    public enum RayPerceptionCastType
    {
        /// <summary>
        /// Cast in 2 dimensions, using Physics2D.CircleCast or Physics2D.RayCast.
        /// </summary>
        Cast2D,

        /// <summary>
        /// Cast in 3 dimensions, using Physics.SphereCast or Physics.RayCast.
        /// </summary>
        Cast3D,
    }

    /// <summary>
    /// Contains the elements that define a ray perception sensor.
    /// </summary>
    public struct RayPerceptionInput
    {
        /// <summary>
        /// Length of the rays to cast. This will be scaled up or down based on the scale of the transform.
        /// </summary>
        public float RayLength;

        /// <summary>
        /// List of tags which correspond to object types agent can see.
        /// </summary>
        public IReadOnlyList<string> DetectableTags;

        /// <summary>
        /// List of angles (in degrees) used to define the rays.
        /// 90 degrees is considered "forward" relative to the game object.
        /// </summary>
        public IReadOnlyList<float> Angles;

        /// <summary>
        /// Starting height offset of ray from center of agent
        /// </summary>
        public float StartOffset;

        /// <summary>
        /// Ending height offset of ray from center of agent.
        /// </summary>
        public float EndOffset;

        /// <summary>
        /// Radius of the sphere to use for spherecasting.
        /// If 0 or less, rays are used instead - this may be faster, especially for complex environments.
        /// </summary>
        public float CastRadius;

        /// <summary>
        /// Transform of the GameObject.
        /// </summary>
        public Transform Transform;

        /// <summary>
        /// Whether to perform the casts in 2D or 3D.
        /// </summary>
        public RayPerceptionCastType CastType;

        /// <summary>
        /// Filtering options for the casts.
        /// </summary>
        public int LayerMask;

        /// <summary>
        ///  Whether to use batched raycasts.
        /// </summary>
        public bool UseBatchedRaycasts;

        /// <summary>
        /// Returns the expected number of floats in the output.
        /// </summary>
        /// <returns></returns>
        public int OutputSize()
        {
            return ((DetectableTags?.Count ?? 0) + 2) * (Angles?.Count ?? 0);
        }

        /// <summary>
        /// Get the cast start and end points for the given ray index/
        /// </summary>
        /// <param name="rayIndex"></param>
        /// <returns>A tuple of the start and end positions in world space.</returns>
        public (Vector3 StartPositionWorld, Vector3 EndPositionWorld) RayExtents(int rayIndex)
        {
            var angle = Angles[rayIndex];
            Vector3 startPositionLocal, endPositionLocal;
            if (CastType == RayPerceptionCastType.Cast3D)
            {
                startPositionLocal = new Vector3(0, StartOffset, 0);
                endPositionLocal = PolarToCartesian3D(RayLength, angle);
                endPositionLocal.y += EndOffset;
            }
            else
            {
                // Vector2s here get converted to Vector3s (and back to Vector2s for casting)
                startPositionLocal = new Vector2();
                endPositionLocal = PolarToCartesian2D(RayLength, angle);
            }

            var startPositionWorld = Transform.TransformPoint(startPositionLocal);
            var endPositionWorld = Transform.TransformPoint(endPositionLocal);

            return (StartPositionWorld: startPositionWorld, EndPositionWorld: endPositionWorld);
        }

        /// <summary>
        /// Converts polar coordinate to cartesian coordinate.
        /// </summary>
        static internal Vector3 PolarToCartesian3D(float radius, float angleDegrees)
        {
            var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
            var z = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
            return new Vector3(x, 0f, z);
        }

        /// <summary>
        /// Converts polar coordinate to cartesian coordinate.
        /// </summary>
        static internal Vector2 PolarToCartesian2D(float radius, float angleDegrees)
        {
            var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
            var y = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
            return new Vector2(x, y);
        }
    }

    /// <summary>
    /// Contains the data generated/produced from a ray perception sensor.
    /// </summary>
    public class RayPerceptionOutput
    {
        /// <summary>
        /// Contains the data generated from a single ray of a ray perception sensor.
        /// </summary>
        public struct RayOutput
        {
            /// <summary>
            /// Whether or not the ray hit anything.
            /// </summary>
            public bool HasHit;

            /// <summary>
            /// Whether or not the ray hit an object whose tag is in the input's DetectableTags list.
            /// </summary>
            public bool HitTaggedObject;

            /// <summary>
            /// The index of the hit object's tag in the DetectableTags list, or -1 if there was no hit, or the
            /// hit object has a different tag.
            /// </summary>
            public int HitTagIndex;

            /// <summary>
            /// Normalized distance to the hit object.
            /// </summary>
            public float HitFraction;

            /// <summary>
            /// The hit GameObject (or null if there was no hit).
            /// </summary>
            public GameObject HitGameObject;

            /// <summary>
            /// Start position of the ray in world space.
            /// </summary>
            public Vector3 StartPositionWorld;

            /// <summary>
            /// End position of the ray in world space.
            /// </summary>
            public Vector3 EndPositionWorld;

            /// <summary>
            /// The scaled length of the ray.
            /// </summary>
            /// <remarks>
            /// If there is non-(1,1,1) scale, |EndPositionWorld - StartPositionWorld| will be different from
            /// the input rayLength.
            /// </remarks>
            public float ScaledRayLength
            {
                get
                {
                    var rayDirection = EndPositionWorld - StartPositionWorld;
                    return rayDirection.magnitude;
                }
            }

            /// <summary>
            /// The scaled size of the cast.
            /// </summary>
            /// <remarks>
            /// If there is non-(1,1,1) scale, the cast radius will be also be scaled.
            /// </remarks>
            public float ScaledCastRadius;

            /// <summary>
            /// Writes the ray output information to a subset of the float array.  Each element in the rayAngles array
            /// determines a sublist of data to the observation. The sublist contains the observation data for a single cast.
            /// The list is composed of the following:
            /// 1. A one-hot encoding for detectable tags. For example, if DetectableTags.Length = n, the
            ///    first n elements of the sublist will be a one-hot encoding of the detectableTag that was hit, or
            ///    all zeroes otherwise.
            /// 2. The 'numDetectableTags' element of the sublist will be 1 if the ray missed everything, or 0 if it hit
            ///    something (detectable or not).
            /// 3. The 'numDetectableTags+1' element of the sublist will contain the normalized distance to the object
            ///    hit, or 1.0 if nothing was hit.
            /// </summary>
            /// <param name="numDetectableTags"></param>
            /// <param name="rayIndex"></param>
            /// <param name="buffer">Output buffer. The size must be equal to (numDetectableTags+2) * RayOutputs.Length</param>
            public void ToFloatArray(int numDetectableTags, int rayIndex, float[] buffer)
            {
                var bufferOffset = (numDetectableTags + 2) * rayIndex;
                if (HitTaggedObject)
                {
                    buffer[bufferOffset + HitTagIndex] = 1f;
                }
                buffer[bufferOffset + numDetectableTags] = HasHit ? 0f : 1f;
                buffer[bufferOffset + numDetectableTags + 1] = HitFraction;
            }
        }

        /// <summary>
        /// RayOutput for each ray that was cast.
        /// </summary>
        public RayOutput[] RayOutputs;
    }

    /// <summary>
    /// A sensor implementation that supports ray cast-based observations.
    /// </summary>
    public class RayPerceptionSensor : ISensor, IBuiltInSensor
    {
        float[] m_Observations;
        ObservationSpec m_ObservationSpec;
        string m_Name;

        RayPerceptionInput m_RayPerceptionInput;
        RayPerceptionOutput m_RayPerceptionOutput;

        bool m_UseBatchedRaycasts;

        /// <summary>
        /// Time.frameCount at the last time Update() was called. This is only used for display in gizmos.
        /// </summary>
        int m_DebugLastFrameCount;

        internal int DebugLastFrameCount
        {
            get { return m_DebugLastFrameCount; }
        }

        /// <summary>
        /// Creates the RayPerceptionSensor.
        /// </summary>
        /// <param name="name">The name of the sensor.</param>
        /// <param name="rayInput">The inputs for the sensor.</param>
        public RayPerceptionSensor(string name, RayPerceptionInput rayInput)
        {
            m_Name = name;
            m_RayPerceptionInput = rayInput;
            m_UseBatchedRaycasts = rayInput.UseBatchedRaycasts;

            SetNumObservations(rayInput.OutputSize());

            m_DebugLastFrameCount = Time.frameCount;
            m_RayPerceptionOutput = new RayPerceptionOutput();
        }

        /// <summary>
        /// The most recent raycast results.
        /// </summary>
        public RayPerceptionOutput RayPerceptionOutput
        {
            get { return m_RayPerceptionOutput; }
        }

        void SetNumObservations(int numObservations)
        {
            m_ObservationSpec = ObservationSpec.Vector(numObservations);
            m_Observations = new float[numObservations];
        }

        internal void SetRayPerceptionInput(RayPerceptionInput rayInput)
        {
            // Note that change the number of rays or tags doesn't directly call this,
            // but changing them and then changing another field will.
            if (m_RayPerceptionInput.OutputSize() != rayInput.OutputSize())
            {
                Debug.Log(
                    "Changing the number of tags or rays at runtime is not " +
                    "supported and may cause errors in training or inference."
                );
                // Changing the shape will probably break things downstream, but we can at least
                // keep this consistent.
                SetNumObservations(rayInput.OutputSize());
            }
            m_RayPerceptionInput = rayInput;
        }

        /// <summary>
        /// Computes the ray perception observations and saves them to the provided
        /// <see cref="ObservationWriter"/>.
        /// </summary>
        /// <param name="writer">Where the ray perception observations are written to.</param>
        /// <returns></returns>
        public int Write(ObservationWriter writer)
        {
            using (TimerStack.Instance.Scoped("RayPerceptionSensor.Perceive"))
            {
                Array.Clear(m_Observations, 0, m_Observations.Length);
                var numRays = m_RayPerceptionInput.Angles.Count;
                var numDetectableTags = m_RayPerceptionInput.DetectableTags.Count;

                // For each ray, write the information to the observation buffer
                for (var rayIndex = 0; rayIndex < numRays; rayIndex++)
                {
                    m_RayPerceptionOutput.RayOutputs?[rayIndex].ToFloatArray(numDetectableTags, rayIndex, m_Observations);
                }

                // Finally, add the observations to the ObservationWriter
                writer.AddList(m_Observations);
            }
            return m_Observations.Length;
        }

        /// <inheritdoc/>
        public void Update()
        {
            m_DebugLastFrameCount = Time.frameCount;
            var numRays = m_RayPerceptionInput.Angles.Count;

            if (m_RayPerceptionOutput.RayOutputs == null || m_RayPerceptionOutput.RayOutputs.Length != numRays)
            {
                m_RayPerceptionOutput.RayOutputs = new RayPerceptionOutput.RayOutput[numRays];
            }

            if (m_UseBatchedRaycasts && m_RayPerceptionInput.CastType == RayPerceptionCastType.Cast3D)
            {
                PerceiveBatchedRays(ref m_RayPerceptionOutput.RayOutputs, m_RayPerceptionInput);
            }
            else
            {
                // For each ray, do the casting and save the results.
                for (var rayIndex = 0; rayIndex < numRays; rayIndex++)
                {
                    m_RayPerceptionOutput.RayOutputs[rayIndex] = PerceiveSingleRay(m_RayPerceptionInput, rayIndex);
                }
            }
        }

        /// <inheritdoc/>
        public void Reset() { }

        /// <inheritdoc/>
        public ObservationSpec GetObservationSpec()
        {
            return m_ObservationSpec;
        }

        /// <inheritdoc/>
        public string GetName()
        {
            return m_Name;
        }

        /// <inheritdoc/>
        public virtual byte[] GetCompressedObservation()
        {
            return null;
        }

        /// <inheritdoc/>
        public CompressionSpec GetCompressionSpec()
        {
            return CompressionSpec.Default();
        }

        /// <inheritdoc/>
        public BuiltInSensorType GetBuiltInSensorType()
        {
            return BuiltInSensorType.RayPerceptionSensor;
        }

        /// <summary>
        /// Evaluates the raycasts to be used as part of an observation of an agent.
        /// </summary>
        /// <param name="input">Input defining the rays that will be cast.</param>
        /// <param name="batched">Use batched raycasts.</param>
        /// <returns>Output struct containing the raycast results.</returns>
        public static RayPerceptionOutput Perceive(RayPerceptionInput input, bool batched)
        {
            RayPerceptionOutput output = new RayPerceptionOutput();
            output.RayOutputs = new RayPerceptionOutput.RayOutput[input.Angles.Count];

            if (batched)
            {
                PerceiveBatchedRays(ref output.RayOutputs, input);
            }
            else
            {
                for (var rayIndex = 0; rayIndex < input.Angles.Count; rayIndex++)
                {
                    output.RayOutputs[rayIndex] = PerceiveSingleRay(input, rayIndex);
                }
            }

            return output;
        }

        /// <summary>
        /// Evaluate the raycast results of all the rays from the RayPerceptionInput as a batch.
        /// </summary>
        /// <param name="input"></param>
        /// <param name="rayIndex"></param>
        /// <returns></returns>
        internal static void PerceiveBatchedRays(ref RayPerceptionOutput.RayOutput[] batchedRaycastOutputs, RayPerceptionInput input)
        {
            var numRays = input.Angles.Count;
            var results = new NativeArray<RaycastHit>(numRays, Allocator.TempJob);
            var unscaledRayLength = input.RayLength;
            var unscaledCastRadius = input.CastRadius;

            var raycastCommands = new NativeArray<RaycastCommand>(unscaledCastRadius <= 0f ? numRays : 0, Allocator.TempJob);
            var spherecastCommands = new NativeArray<SpherecastCommand>(unscaledCastRadius > 0f ? numRays : 0, Allocator.TempJob);

            // this is looped

            for (int i = 0; i < numRays; i++)
            {
                var extents = input.RayExtents(i);
                var startPositionWorld = extents.StartPositionWorld;
                var endPositionWorld = extents.EndPositionWorld;

                var rayDirection = endPositionWorld - startPositionWorld;
                // If there is non-unity scale, |rayDirection| will be different from rayLength.
                // We want to use this transformed ray length for determining cast length, hit fraction etc.
                // We also it to scale up or down the sphere or circle radii
                var scaledRayLength = rayDirection.magnitude;
                // Avoid 0/0 if unscaledRayLength is 0
                var scaledCastRadius = unscaledRayLength > 0 ?
                    unscaledCastRadius * scaledRayLength / unscaledRayLength :
                    unscaledCastRadius;

                var queryParameters = QueryParameters.Default;
                queryParameters.layerMask = input.LayerMask;

                var rayDirectionNormalized = rayDirection.normalized;

                if (scaledCastRadius > 0f)
                {
                    spherecastCommands[i] = new SpherecastCommand(startPositionWorld, scaledCastRadius, rayDirectionNormalized, queryParameters, scaledRayLength);
                }
                else
                {
                    raycastCommands[i] = new RaycastCommand(startPositionWorld, rayDirectionNormalized, queryParameters, scaledRayLength);
                }

                batchedRaycastOutputs[i] = new RayPerceptionOutput.RayOutput
                {
                    HitTaggedObject = false,
                    HitTagIndex = -1,
                    StartPositionWorld = startPositionWorld,
                    EndPositionWorld = endPositionWorld,
                    ScaledCastRadius = scaledCastRadius
                };

            }

            if (unscaledCastRadius > 0f)
            {
                JobHandle handle = SpherecastCommand.ScheduleBatch(spherecastCommands, results, 1, 1, default(JobHandle));
                handle.Complete();
            }
            else
            {
                JobHandle handle = RaycastCommand.ScheduleBatch(raycastCommands, results, 1, 1, default(JobHandle));
                handle.Complete();
            }

            for (int i = 0; i < results.Length; i++)
            {
                var castHit = results[i].collider != null;
                var hitFraction = 1.0f;
                GameObject hitObject = null;
                float scaledRayLength;
                float scaledCastRadius = batchedRaycastOutputs[i].ScaledCastRadius;
                if (scaledCastRadius > 0f)
                {
                    scaledRayLength = spherecastCommands[i].distance;
                }
                else
                {
                    scaledRayLength = raycastCommands[i].distance;
                }

                // hitFraction = castHit ? (scaledRayLength > 0 ? results[i].distance / scaledRayLength : 0.0f) : 1.0f;
                // Debug.Log(results[i].distance);
                hitFraction = castHit ? (scaledRayLength > 0 ? results[i].distance / scaledRayLength : 0.0f) : 1.0f;
                hitObject = castHit ? results[i].collider.gameObject : null;

                if (castHit)
                {
                    var numTags = input.DetectableTags?.Count ?? 0;
                    for (int j = 0; j < numTags; j++)
                    {
                        var tagsEqual = false;
                        try
                        {
                            var tag = input.DetectableTags[j];
                            if (!string.IsNullOrEmpty(tag))
                            {
                                tagsEqual = hitObject.CompareTag(tag);
                            }
                        }
                        catch (UnityException)
                        {
                        }

                        if (tagsEqual)
                        {
                            batchedRaycastOutputs[i].HitTaggedObject = true;
                            batchedRaycastOutputs[i].HitTagIndex = j;
                            break;
                        }
                    }
                }

                batchedRaycastOutputs[i].HasHit = castHit;
                batchedRaycastOutputs[i].HitFraction = hitFraction;
                batchedRaycastOutputs[i].HitGameObject = hitObject;

            }

            results.Dispose();
            raycastCommands.Dispose();
            spherecastCommands.Dispose();
        }

        /// <summary>
        /// Evaluate the raycast results of a single ray from the RayPerceptionInput.
        /// </summary>
        /// <param name="input"></param>
        /// <param name="rayIndex"></param>
        /// <returns></returns>
        internal static RayPerceptionOutput.RayOutput PerceiveSingleRay(
            RayPerceptionInput input,
            int rayIndex
        )
        {
            var unscaledRayLength = input.RayLength;
            var unscaledCastRadius = input.CastRadius;

            var extents = input.RayExtents(rayIndex);
            var startPositionWorld = extents.StartPositionWorld;
            var endPositionWorld = extents.EndPositionWorld;

            var rayDirection = endPositionWorld - startPositionWorld;
            // If there is non-unity scale, |rayDirection| will be different from rayLength.
            // We want to use this transformed ray length for determining cast length, hit fraction etc.
            // We also it to scale up or down the sphere or circle radii
            var scaledRayLength = rayDirection.magnitude;
            // Avoid 0/0 if unscaledRayLength is 0
            var scaledCastRadius = unscaledRayLength > 0 ?
                unscaledCastRadius * scaledRayLength / unscaledRayLength :
                unscaledCastRadius;

            // Do the cast and assign the hit information for each detectable tag.
            var castHit = false;
            var hitFraction = 1.0f;
            GameObject hitObject = null;

            if (input.CastType == RayPerceptionCastType.Cast3D)
            {
#if MLA_UNITY_PHYSICS_MODULE
                RaycastHit rayHit;
                if (scaledCastRadius > 0f)
                {
                    castHit = Physics.SphereCast(startPositionWorld, scaledCastRadius, rayDirection, out rayHit,
                        scaledRayLength, input.LayerMask);
                }
                else
                {
                    castHit = Physics.Raycast(startPositionWorld, rayDirection, out rayHit,
                        scaledRayLength, input.LayerMask);
                }

                // If scaledRayLength is 0, we still could have a hit with sphere casts (maybe?).
                // To avoid 0/0, set the fraction to 0.
                hitFraction = castHit ? (scaledRayLength > 0 ? rayHit.distance / scaledRayLength : 0.0f) : 1.0f;
                hitObject = castHit ? rayHit.collider.gameObject : null;
#endif
            }
            else
            {
#if MLA_UNITY_PHYSICS2D_MODULE
                RaycastHit2D rayHit;
                if (scaledCastRadius > 0f)
                {
                    rayHit = Physics2D.CircleCast(startPositionWorld, scaledCastRadius, rayDirection,
                        scaledRayLength, input.LayerMask);
                }
                else
                {
                    rayHit = Physics2D.Raycast(startPositionWorld, rayDirection, scaledRayLength, input.LayerMask);
                }

                castHit = rayHit;
                hitFraction = castHit ? rayHit.fraction : 1.0f;
                hitObject = castHit ? rayHit.collider.gameObject : null;
#endif
            }

            var rayOutput = new RayPerceptionOutput.RayOutput
            {
                HasHit = castHit,
                HitFraction = hitFraction,
                HitTaggedObject = false,
                HitTagIndex = -1,
                HitGameObject = hitObject,
                StartPositionWorld = startPositionWorld,
                EndPositionWorld = endPositionWorld,
                ScaledCastRadius = scaledCastRadius
            };

            if (castHit)
            {
                // Find the index of the tag of the object that was hit.
                var numTags = input.DetectableTags?.Count ?? 0;
                for (var i = 0; i < numTags; i++)
                {
                    var tagsEqual = false;
                    try
                    {
                        var tag = input.DetectableTags[i];
                        if (!string.IsNullOrEmpty(tag))
                        {
                            tagsEqual = hitObject.CompareTag(tag);
                        }
                    }
                    catch (UnityException)
                    {
                        // If the tag is null, empty, or not a valid tag, just ignore it.
                    }

                    if (tagsEqual)
                    {
                        rayOutput.HitTaggedObject = true;
                        rayOutput.HitTagIndex = i;
                        break;
                    }
                }
            }


            return rayOutput;
        }
    }
}