File size: 15,457 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
using System;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Serialization;
namespace Unity.MLAgents.Sensors
{
/// <summary>
/// A base class to support sensor components for raycast-based sensors.
/// </summary>
public abstract class RayPerceptionSensorComponentBase : SensorComponent
{
[HideInInspector, SerializeField, FormerlySerializedAs("sensorName")]
string m_SensorName = "RayPerceptionSensor";
/// <summary>
/// The name of the Sensor that this component wraps.
/// Note that changing this at runtime does not affect how the Agent sorts the sensors.
/// </summary>
public string SensorName
{
get { return m_SensorName; }
set { m_SensorName = value; }
}
[SerializeField, FormerlySerializedAs("detectableTags")]
[Tooltip("List of tags in the scene to compare against.")]
List<string> m_DetectableTags;
/// <summary>
/// List of tags in the scene to compare against.
/// Note that this should not be changed at runtime.
/// </summary>
public List<string> DetectableTags
{
get { return m_DetectableTags; }
set { m_DetectableTags = value; }
}
[HideInInspector, SerializeField, FormerlySerializedAs("raysPerDirection")]
[Range(0, 50)]
[Tooltip("Number of rays to the left and right of center.")]
int m_RaysPerDirection = 3;
/// <summary>
/// Number of rays to the left and right of center.
/// Note that this should not be changed at runtime.
/// </summary>
public int RaysPerDirection
{
get { return m_RaysPerDirection; }
// Note: can't change at runtime
set { m_RaysPerDirection = value; }
}
[HideInInspector, SerializeField, FormerlySerializedAs("maxRayDegrees")]
[Range(0, 180)]
[Tooltip("Cone size for rays. Using 90 degrees will cast rays to the left and right. " +
"Greater than 90 degrees will go backwards.")]
float m_MaxRayDegrees = 70;
/// <summary>
/// Cone size for rays. Using 90 degrees will cast rays to the left and right.
/// Greater than 90 degrees will go backwards.
/// </summary>
public float MaxRayDegrees
{
get => m_MaxRayDegrees;
set { m_MaxRayDegrees = value; UpdateSensor(); }
}
[HideInInspector, SerializeField, FormerlySerializedAs("sphereCastRadius")]
[Range(0f, 10f)]
[Tooltip("Radius of sphere to cast. Set to zero for raycasts.")]
float m_SphereCastRadius = 0.5f;
/// <summary>
/// Radius of sphere to cast. Set to zero for raycasts.
/// </summary>
public float SphereCastRadius
{
get => m_SphereCastRadius;
set { m_SphereCastRadius = value; UpdateSensor(); }
}
[HideInInspector, SerializeField, FormerlySerializedAs("rayLength")]
[Range(1, 1000)]
[Tooltip("Length of the rays to cast.")]
float m_RayLength = 20f;
/// <summary>
/// Length of the rays to cast.
/// </summary>
public float RayLength
{
get => m_RayLength;
set { m_RayLength = value; UpdateSensor(); }
}
// The value of the default layers.
const int k_PhysicsDefaultLayers = -5;
[HideInInspector, SerializeField, FormerlySerializedAs("rayLayerMask")]
[Tooltip("Controls which layers the rays can hit.")]
LayerMask m_RayLayerMask = k_PhysicsDefaultLayers;
/// <summary>
/// Controls which layers the rays can hit.
/// </summary>
public LayerMask RayLayerMask
{
get => m_RayLayerMask;
set { m_RayLayerMask = value; UpdateSensor(); }
}
[HideInInspector, SerializeField, FormerlySerializedAs("observationStacks")]
[Range(1, 50)]
[Tooltip("Number of raycast results that will be stacked before being fed to the neural network.")]
int m_ObservationStacks = 1;
/// <summary>
/// Whether to stack previous observations. Using 1 means no previous observations.
/// Note that changing this after the sensor is created has no effect.
/// </summary>
public int ObservationStacks
{
get { return m_ObservationStacks; }
set { m_ObservationStacks = value; }
}
[HideInInspector, SerializeField]
[Tooltip("Disable to provide the rays in left to right order. Warning: Alternating order will be deprecated, disable it to ensure compatibility with future versions of ML-Agents.")]
public bool m_AlternatingRayOrder = true;
/// <summary>
/// Determines how the rays are ordered. By default the ordering is as follows: middle ray is first;
/// then alternates outward adding rays to the left and right. If set to false, then the rays are
/// ordered from left to right (viewed from above) which is more amenable to processing with
/// conv nets.
/// This property will be deprecated with the next major version update and the left to right ordering
/// will be used thereafter.
/// </summary>
public bool AlternatingRayOrder
{
get { return m_AlternatingRayOrder; }
set { m_AlternatingRayOrder = value; }
}
[HideInInspector, SerializeField]
[Tooltip("Enable to use batched raycasts and the jobs system.")]
public bool m_UseBatchedRaycasts = false;
/// <summary>
/// Determines whether to use batched raycasts and the jobs system. Default = false.
/// </summary>
public bool UseBatchedRaycasts
{
get { return m_UseBatchedRaycasts; }
set { m_UseBatchedRaycasts = value; }
}
/// <summary>
/// Color to code a ray that hits another object.
/// </summary>
[HideInInspector]
[SerializeField]
[Header("Debug Gizmos", order = 999)]
internal Color rayHitColor = Color.red;
/// <summary>
/// Color to code a ray that avoid or misses all other objects.
/// </summary>
[HideInInspector]
[SerializeField]
internal Color rayMissColor = Color.white;
[NonSerialized]
RayPerceptionSensor m_RaySensor;
/// <summary>
/// Get the RayPerceptionSensor that was created.
/// </summary>
public RayPerceptionSensor RaySensor
{
get => m_RaySensor;
}
/// <summary>
/// Returns the <see cref="RayPerceptionCastType"/> for the associated raycast sensor.
/// </summary>
/// <returns></returns>
public abstract RayPerceptionCastType GetCastType();
/// <summary>
/// Returns the amount that the ray start is offset up or down by.
/// </summary>
/// <returns></returns>
public virtual float GetStartVerticalOffset()
{
return 0f;
}
/// <summary>
/// Returns the amount that the ray end is offset up or down by.
/// </summary>
/// <returns></returns>
public virtual float GetEndVerticalOffset()
{
return 0f;
}
/// <summary>
/// Returns an initialized raycast sensor.
/// </summary>
/// <returns></returns>
public override ISensor[] CreateSensors()
{
var rayPerceptionInput = GetRayPerceptionInput();
m_RaySensor = new RayPerceptionSensor(m_SensorName, rayPerceptionInput);
if (ObservationStacks != 1)
{
var stackingSensor = new StackingSensor(m_RaySensor, ObservationStacks);
return new ISensor[] { stackingSensor };
}
return new ISensor[] { m_RaySensor };
}
/// <summary>
/// Returns the specific ray angles given the number of rays per direction and the
/// cone size for the rays.
/// </summary>
/// <param name="raysPerDirection">Number of rays to the left and right of center.</param>
/// <param name="maxRayDegrees">
/// Cone size for rays. Using 90 degrees will cast rays to the left and right.
/// Greater than 90 degrees will go backwards.
/// Orders the rays starting with the centermost and alternating to the left and right.
/// Should be deprecated with a future major version release (doing so will break existing
/// models).
/// </param>
/// <returns></returns>
internal static float[] GetRayAnglesAlternating(int raysPerDirection, float maxRayDegrees)
{
// Example:
// { 90, 90 - delta, 90 + delta, 90 - 2*delta, 90 + 2*delta }
var anglesOut = new float[2 * raysPerDirection + 1];
var delta = maxRayDegrees / raysPerDirection;
anglesOut[0] = 90f;
for (var i = 0; i < raysPerDirection; i++)
{
anglesOut[2 * i + 1] = 90 - (i + 1) * delta;
anglesOut[2 * i + 2] = 90 + (i + 1) * delta;
}
return anglesOut;
}
/// <summary>
/// Returns the specific ray angles given the number of rays per direction and the
/// cone size for the rays.
/// </summary>
/// <param name="raysPerDirection">Number of rays to the left and right of center.</param>
/// <param name="maxRayDegrees">
/// Cone size for rays. Using 90 degrees will cast rays to the left and right.
/// Greater than 90 degrees will go backwards.
/// Orders the rays from the left-most to the right-most which makes using a convolution
/// in the model easier.
/// </param>
/// <returns></returns>
internal static float[] GetRayAngles(int raysPerDirection, float maxRayDegrees)
{
// Example:
// { 90 - 3*delta, 90 - 2*delta, ..., 90, 90 + delta, ..., 90 + 3*delta }
var anglesOut = new float[2 * raysPerDirection + 1];
var delta = maxRayDegrees / raysPerDirection;
for (var i = 0; i < 2 * raysPerDirection + 1; i++)
{
anglesOut[i] = 90 + (i - raysPerDirection) * delta;
}
return anglesOut;
}
/// <summary>
/// Get the RayPerceptionInput that is used by the <see cref="RayPerceptionSensor"/>.
/// </summary>
/// <returns></returns>
public RayPerceptionInput GetRayPerceptionInput()
{
var rayAngles = m_AlternatingRayOrder ?
GetRayAnglesAlternating(RaysPerDirection, MaxRayDegrees) :
GetRayAngles(RaysPerDirection, MaxRayDegrees);
var rayPerceptionInput = new RayPerceptionInput();
rayPerceptionInput.RayLength = RayLength;
rayPerceptionInput.DetectableTags = DetectableTags;
rayPerceptionInput.Angles = rayAngles;
rayPerceptionInput.StartOffset = GetStartVerticalOffset();
rayPerceptionInput.EndOffset = GetEndVerticalOffset();
rayPerceptionInput.CastRadius = SphereCastRadius;
rayPerceptionInput.Transform = transform;
rayPerceptionInput.CastType = GetCastType();
rayPerceptionInput.LayerMask = RayLayerMask;
rayPerceptionInput.UseBatchedRaycasts = UseBatchedRaycasts;
return rayPerceptionInput;
}
internal void UpdateSensor()
{
if (m_RaySensor != null)
{
var rayInput = GetRayPerceptionInput();
m_RaySensor.SetRayPerceptionInput(rayInput);
}
}
internal int SensorObservationAge()
{
if (m_RaySensor != null)
{
return Time.frameCount - m_RaySensor.DebugLastFrameCount;
}
return 0;
}
void OnDrawGizmosSelected()
{
if (m_RaySensor?.RayPerceptionOutput?.RayOutputs != null)
{
// If we have cached debug info from the sensor, draw that.
// Draw "old" observations in a lighter color.
// Since the agent may not step every frame, this helps de-emphasize "stale" hit information.
var alpha = Mathf.Pow(.5f, SensorObservationAge());
foreach (var rayInfo in m_RaySensor.RayPerceptionOutput.RayOutputs)
{
DrawRaycastGizmos(rayInfo, alpha);
}
}
else
{
var rayInput = GetRayPerceptionInput();
// We don't actually need the tags here, since they don't affect the display of the rays.
// Additionally, the user might be in the middle of typing the tag name when this is called,
// and there's no way to turn off the "Tag ... is not defined" error logs.
// So just don't use any tags here.
rayInput.DetectableTags = null;
if (m_UseBatchedRaycasts && rayInput.CastType == RayPerceptionCastType.Cast3D)
{
// TODO add call to PerceiveBatchedRays()
var rayOutputs = new RayPerceptionOutput.RayOutput[rayInput.Angles.Count];
RayPerceptionSensor.PerceiveBatchedRays(ref rayOutputs, rayInput);
for (var rayIndex = 0; rayIndex < rayInput.Angles.Count; rayIndex++)
{
DrawRaycastGizmos(rayOutputs[rayIndex]);
}
}
else
{
for (var rayIndex = 0; rayIndex < rayInput.Angles.Count; rayIndex++)
{
var rayOutput = RayPerceptionSensor.PerceiveSingleRay(rayInput, rayIndex);
DrawRaycastGizmos(rayOutput);
}
}
}
}
/// <summary>
/// Draw the debug information from the sensor (if available).
/// </summary>
void DrawRaycastGizmos(RayPerceptionOutput.RayOutput rayOutput, float alpha = 1.0f)
{
var startPositionWorld = rayOutput.StartPositionWorld;
var endPositionWorld = rayOutput.EndPositionWorld;
var rayDirection = endPositionWorld - startPositionWorld;
rayDirection *= rayOutput.HitFraction;
// hit fraction ^2 will shift "far" hits closer to the hit color
var lerpT = rayOutput.HitFraction * rayOutput.HitFraction;
var color = Color.Lerp(rayHitColor, rayMissColor, lerpT);
color.a *= alpha;
Gizmos.color = color;
Gizmos.DrawRay(startPositionWorld, rayDirection);
// Draw the hit point as a sphere. If using rays to cast (0 radius), use a small sphere.
if (rayOutput.HasHit)
{
var hitRadius = Mathf.Max(rayOutput.ScaledCastRadius, .05f);
Gizmos.DrawWireSphere(startPositionWorld + rayDirection, hitRadius);
}
}
}
}
|