File size: 7,344 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
using System.Collections.Generic;
using Unity.Barracuda;
using NUnit.Framework;
using UnityEngine;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Policies;
using Unity.MLAgents.Utils.Tests;

namespace Unity.MLAgents.Tests
{
    [TestFixture]
    public class EditModeTestInternalBrainTensorGenerator
    {
        [SetUp]
        public void SetUp()
        {
            if (Academy.IsInitialized)
            {
                Academy.Instance.Dispose();
            }
        }

        static List<TestAgent> GetFakeAgents(ObservableAttributeOptions observableAttributeOptions = ObservableAttributeOptions.Ignore)
        {
            var goA = new GameObject("goA");
            var bpA = goA.AddComponent<BehaviorParameters>();
            bpA.BrainParameters.VectorObservationSize = 3;
            bpA.BrainParameters.NumStackedVectorObservations = 1;
            bpA.ObservableAttributeHandling = observableAttributeOptions;
            var agentA = goA.AddComponent<TestAgent>();

            var goB = new GameObject("goB");
            var bpB = goB.AddComponent<BehaviorParameters>();
            bpB.BrainParameters.VectorObservationSize = 3;
            bpB.BrainParameters.NumStackedVectorObservations = 1;
            bpB.ObservableAttributeHandling = observableAttributeOptions;
            var agentB = goB.AddComponent<TestAgent>();

            var agents = new List<TestAgent> { agentA, agentB };
            foreach (var agent in agents)
            {
                agent.LazyInitialize();
            }
            agentA.collectObservationsSensor.AddObservation(new Vector3(1, 2, 3));
            agentB.collectObservationsSensor.AddObservation(new Vector3(4, 5, 6));

            var infoA = new AgentInfo
            {
                storedActions = new ActionBuffers(null, new[] { 1, 2 }),
                discreteActionMasks = null,
            };

            var infoB = new AgentInfo
            {
                storedActions = new ActionBuffers(null, new[] { 3, 4 }),
                discreteActionMasks = new[] { true, false, false, false, false },
            };


            agentA._Info = infoA;
            agentB._Info = infoB;
            return agents;
        }

        [Test]
        public void Construction()
        {
            var alloc = new TensorCachingAllocator();
            var mem = new Dictionary<int, List<float>>();
            var tensorGenerator = new TensorGenerator(0, alloc, mem);
            Assert.IsNotNull(tensorGenerator);
            alloc.Dispose();
        }

        [Test]
        public void GenerateBatchSize()
        {
            var inputTensor = new TensorProxy();
            var alloc = new TensorCachingAllocator();
            const int batchSize = 4;
            var generator = new BatchSizeGenerator(alloc);
            generator.Generate(inputTensor, batchSize, null);
            Assert.IsNotNull(inputTensor.data);
            Assert.AreEqual(inputTensor.data[0], batchSize);
            alloc.Dispose();
        }

        [Test]
        public void GenerateSequenceLength()
        {
            var inputTensor = new TensorProxy();
            var alloc = new TensorCachingAllocator();
            const int batchSize = 4;
            var generator = new SequenceLengthGenerator(alloc);
            generator.Generate(inputTensor, batchSize, null);
            Assert.IsNotNull(inputTensor.data);
            Assert.AreEqual(inputTensor.data[0], 1);
            alloc.Dispose();
        }

        [Test]
        public void GenerateVectorObservation()
        {
            var inputTensor = new TensorProxy
            {
                shape = new long[] { 2, 4 }
            };
            const int batchSize = 4;
            var agentInfos = GetFakeAgents(ObservableAttributeOptions.ExamineAll);
            var alloc = new TensorCachingAllocator();
            var generator = new ObservationGenerator(alloc);
            generator.AddSensorIndex(0); // ObservableAttribute (size 1)
            generator.AddSensorIndex(1); // TestSensor (size 0)
            generator.AddSensorIndex(2); // TestSensor (size 0)
            generator.AddSensorIndex(3); // VectorSensor (size 3)
            var agent0 = agentInfos[0];
            var agent1 = agentInfos[1];
            var inputs = new List<AgentInfoSensorsPair>
            {
                new AgentInfoSensorsPair {agentInfo = agent0._Info, sensors = agent0.sensors},
                new AgentInfoSensorsPair {agentInfo = agent1._Info, sensors = agent1.sensors},
            };
            generator.Generate(inputTensor, batchSize, inputs);
            Assert.IsNotNull(inputTensor.data);
            Assert.AreEqual(inputTensor.data[0, 1], 1);
            Assert.AreEqual(inputTensor.data[0, 3], 3);
            Assert.AreEqual(inputTensor.data[1, 1], 4);
            Assert.AreEqual(inputTensor.data[1, 3], 6);
            alloc.Dispose();
        }

        [Test]
        public void GeneratePreviousActionInput()
        {
            var inputTensor = new TensorProxy
            {
                shape = new long[] { 2, 2 },
                valueType = TensorProxy.TensorType.Integer
            };
            const int batchSize = 4;
            var agentInfos = GetFakeAgents();
            var alloc = new TensorCachingAllocator();
            var generator = new PreviousActionInputGenerator(alloc);
            var agent0 = agentInfos[0];
            var agent1 = agentInfos[1];
            var inputs = new List<AgentInfoSensorsPair>
            {
                new AgentInfoSensorsPair {agentInfo = agent0._Info, sensors = agent0.sensors},
                new AgentInfoSensorsPair {agentInfo = agent1._Info, sensors = agent1.sensors},
            };
            generator.Generate(inputTensor, batchSize, inputs);
            Assert.IsNotNull(inputTensor.data);
            Assert.AreEqual(inputTensor.data[0, 0], 1);
            Assert.AreEqual(inputTensor.data[0, 1], 2);
            Assert.AreEqual(inputTensor.data[1, 0], 3);
            Assert.AreEqual(inputTensor.data[1, 1], 4);
            alloc.Dispose();
        }

        [Test]
        public void GenerateActionMaskInput()
        {
            var inputTensor = new TensorProxy
            {
                shape = new long[] { 2, 5 },
                valueType = TensorProxy.TensorType.FloatingPoint
            };
            const int batchSize = 4;
            var agentInfos = GetFakeAgents();
            var alloc = new TensorCachingAllocator();
            var generator = new ActionMaskInputGenerator(alloc);

            var agent0 = agentInfos[0];
            var agent1 = agentInfos[1];
            var inputs = new List<AgentInfoSensorsPair>
            {
                new AgentInfoSensorsPair {agentInfo = agent0._Info, sensors = agent0.sensors},
                new AgentInfoSensorsPair {agentInfo = agent1._Info, sensors = agent1.sensors},
            };

            generator.Generate(inputTensor, batchSize, inputs);
            Assert.IsNotNull(inputTensor.data);
            Assert.AreEqual(inputTensor.data[0, 0], 1);
            Assert.AreEqual(inputTensor.data[0, 4], 1);
            Assert.AreEqual(inputTensor.data[1, 0], 0);
            Assert.AreEqual(inputTensor.data[1, 4], 1);
            alloc.Dispose();
        }
    }
}