File size: 11,412 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
using System;
using System.Linq;
using NUnit.Framework;
using UnityEngine;
using UnityEditor;
using Unity.Barracuda;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Policies;
using System.Collections.Generic;

namespace Unity.MLAgents.Tests
{
    public class FloatThresholdComparer : IEqualityComparer<float>
    {
        private readonly float _threshold;
        public FloatThresholdComparer(float threshold)
        {
            _threshold = threshold;
        }

        public bool Equals(float x, float y)
        {
            return Math.Abs(x - y) < _threshold;
        }

        public int GetHashCode(float f)
        {
            throw new NotImplementedException("Unable to generate a hash code for threshold floats, do not use this method");
        }
    }

    [TestFixture]
    public class ModelRunnerTest
    {
        const string k_hybrid_ONNX_recurr_v2 = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis8vec_2c_2_3d_v2_0.onnx";

        const string k_continuousONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_v1_0.onnx";
        const string k_discreteONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_obsolete_recurr_v1_0.onnx";
        const string k_hybridONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis53vec_3c_2daction_v1_0.onnx";
        const string k_continuousNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_deprecated_v1_0.nn";
        const string k_discreteNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_recurr_deprecated_v1_0.nn";
        // models with deterministic action tensors
        private const string k_deterministic_discreteNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/deterDiscrete1obs3action_v2_0.onnx";
        private const string k_deterministic_continuousNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/deterContinuous2vis8vec2action_v2_0.onnx";

        NNModel hybridONNXModelV2;
        NNModel continuousONNXModel;
        NNModel discreteONNXModel;
        NNModel hybridONNXModel;
        NNModel continuousNNModel;
        NNModel discreteNNModel;
        NNModel deterministicDiscreteNNModel;
        NNModel deterministicContinuousNNModel;
        Test3DSensorComponent sensor_21_20_3;
        Test3DSensorComponent sensor_20_22_3;


        ActionSpec GetContinuous2vis8vec2actionActionSpec()
        {
            return ActionSpec.MakeContinuous(2);
        }

        ActionSpec GetDiscrete1vis0vec_2_3action_recurrModelActionSpec()
        {
            return ActionSpec.MakeDiscrete(2, 3);
        }

        ActionSpec GetHybrid0vis53vec_3c_2dActionSpec()
        {
            return new ActionSpec(3, new[] { 2 });
        }

        [SetUp]
        public void SetUp()
        {
            hybridONNXModelV2 = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybrid_ONNX_recurr_v2, typeof(NNModel));

            continuousONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousONNXPath, typeof(NNModel));
            discreteONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteONNXPath, typeof(NNModel));
            hybridONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybridONNXPath, typeof(NNModel));
            continuousNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousNNPath, typeof(NNModel));
            discreteNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteNNPath, typeof(NNModel));
            deterministicDiscreteNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_deterministic_discreteNNPath, typeof(NNModel));
            deterministicContinuousNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_deterministic_continuousNNPath, typeof(NNModel));
            var go = new GameObject("SensorA");
            sensor_21_20_3 = go.AddComponent<Test3DSensorComponent>();
            sensor_21_20_3.Sensor = new Test3DSensor("SensorA", 21, 20, 3);
            sensor_20_22_3 = go.AddComponent<Test3DSensorComponent>();
            sensor_20_22_3.Sensor = new Test3DSensor("SensorB", 20, 22, 3);
        }

        [Test]
        public void TestModelExist()
        {
            Assert.IsNotNull(continuousONNXModel);
            Assert.IsNotNull(discreteONNXModel);
            Assert.IsNotNull(hybridONNXModel);
            Assert.IsNotNull(continuousNNModel);
            Assert.IsNotNull(discreteNNModel);
            Assert.IsNotNull(hybridONNXModelV2);
            Assert.IsNotNull(deterministicDiscreteNNModel);
            Assert.IsNotNull(deterministicContinuousNNModel);
        }

        [Test]
        public void TestCreation()
        {
            var inferenceDevice = InferenceDevice.Burst;
            var modelRunner = new ModelRunner(continuousONNXModel, GetContinuous2vis8vec2actionActionSpec(), inferenceDevice);
            modelRunner.Dispose();
            Assert.Throws<UnityAgentsException>(() =>
            {
                // Cannot load a model trained with 1.x that has an LSTM
                modelRunner = new ModelRunner(discreteONNXModel, GetDiscrete1vis0vec_2_3action_recurrModelActionSpec(), inferenceDevice);
                modelRunner.Dispose();
            });
            modelRunner = new ModelRunner(hybridONNXModel, GetHybrid0vis53vec_3c_2dActionSpec(), inferenceDevice);
            modelRunner.Dispose();
            modelRunner = new ModelRunner(continuousNNModel, GetContinuous2vis8vec2actionActionSpec(), inferenceDevice);
            modelRunner.Dispose();

            Assert.Throws<UnityAgentsException>(() =>
            {
                // Cannot load a model trained with 1.x that has an LSTM
                modelRunner = new ModelRunner(discreteNNModel, GetDiscrete1vis0vec_2_3action_recurrModelActionSpec(), inferenceDevice);
                modelRunner.Dispose();
            });
            // This one was trained with 2.0 so it should not raise an error:
            modelRunner = new ModelRunner(hybridONNXModelV2, new ActionSpec(2, new[] { 2, 3 }), inferenceDevice);
            modelRunner.Dispose();

            // V2.0 Model that has serialized deterministic action tensors, discrete
            modelRunner = new ModelRunner(deterministicDiscreteNNModel, new ActionSpec(0, new[] { 7 }), inferenceDevice);
            modelRunner.Dispose();
            // V2.0 Model that has serialized deterministic action tensors, continuous
            modelRunner = new ModelRunner(deterministicContinuousNNModel,
                GetContinuous2vis8vec2actionActionSpec(), inferenceDevice,
                deterministicInference: true);
            modelRunner.Dispose();
        }

        [Test]
        public void TestHasModel()
        {
            var modelRunner = new ModelRunner(continuousONNXModel, GetContinuous2vis8vec2actionActionSpec(), InferenceDevice.CPU);
            Assert.True(modelRunner.HasModel(continuousONNXModel, InferenceDevice.CPU));
            Assert.False(modelRunner.HasModel(continuousONNXModel, InferenceDevice.GPU));
            Assert.False(modelRunner.HasModel(discreteONNXModel, InferenceDevice.CPU));
            modelRunner.Dispose();
        }

        [Test]
        public void TestRunModel()
        {
            var actionSpec = GetContinuous2vis8vec2actionActionSpec();
            var modelRunner = new ModelRunner(continuousONNXModel, actionSpec, InferenceDevice.Burst);
            var sensor_8 = new Sensors.VectorSensor(8, "VectorSensor8");
            var info1 = new AgentInfo();
            info1.episodeId = 1;
            modelRunner.PutObservations(info1, new[]
            {
                sensor_8,
                sensor_21_20_3.CreateSensors()[0],
                sensor_20_22_3.CreateSensors()[0]
            }.ToList());
            var info2 = new AgentInfo();
            info2.episodeId = 2;
            modelRunner.PutObservations(info2, new[]
            {
                sensor_8,
                sensor_21_20_3.CreateSensors()[0],
                sensor_20_22_3.CreateSensors()[0]
            }.ToList());

            modelRunner.DecideBatch();

            Assert.IsFalse(modelRunner.GetAction(1).Equals(ActionBuffers.Empty));
            Assert.IsFalse(modelRunner.GetAction(2).Equals(ActionBuffers.Empty));
            Assert.IsTrue(modelRunner.GetAction(3).Equals(ActionBuffers.Empty));
            Assert.AreEqual(actionSpec.NumDiscreteActions, modelRunner.GetAction(1).DiscreteActions.Length);
            modelRunner.Dispose();
        }

        [Test]
        public void TestRunModel_stochastic()
        {
            var actionSpec = GetContinuous2vis8vec2actionActionSpec();
            // deterministicInference = false by default
            var modelRunner = new ModelRunner(deterministicContinuousNNModel, actionSpec, InferenceDevice.Burst);
            var sensor_8 = new Sensors.VectorSensor(8, "VectorSensor8");
            var info1 = new AgentInfo();
            var obs = new[]
            {
                sensor_8,
                sensor_21_20_3.CreateSensors()[0],
                sensor_20_22_3.CreateSensors()[0]
            }.ToList();
            info1.episodeId = 1;
            modelRunner.PutObservations(info1, obs);
            modelRunner.DecideBatch();
            var stochAction1 = (float[])modelRunner.GetAction(1).ContinuousActions.Array.Clone();

            modelRunner.PutObservations(info1, obs);
            modelRunner.DecideBatch();
            var stochAction2 = (float[])modelRunner.GetAction(1).ContinuousActions.Array.Clone();
            // Stochastic action selection should output randomly different action values with same obs
            Assert.IsFalse(Enumerable.SequenceEqual(stochAction1, stochAction2, new FloatThresholdComparer(0.001f)));
            modelRunner.Dispose();
        }

        [Test]
        public void TestRunModel_deterministic()
        {
            var actionSpec = GetContinuous2vis8vec2actionActionSpec();
            var modelRunner = new ModelRunner(deterministicContinuousNNModel, actionSpec, InferenceDevice.Burst);
            var sensor_8 = new Sensors.VectorSensor(8, "VectorSensor8");
            var info1 = new AgentInfo();
            var obs = new[]
            {
                sensor_8,
                sensor_21_20_3.CreateSensors()[0],
                sensor_20_22_3.CreateSensors()[0]
            }.ToList();
            var deterministicModelRunner = new ModelRunner(deterministicContinuousNNModel, actionSpec, InferenceDevice.Burst,
                deterministicInference: true);
            info1.episodeId = 1;
            deterministicModelRunner.PutObservations(info1, obs);
            deterministicModelRunner.DecideBatch();
            var deterministicAction1 = (float[])deterministicModelRunner.GetAction(1).ContinuousActions.Array.Clone();

            deterministicModelRunner.PutObservations(info1, obs);
            deterministicModelRunner.DecideBatch();
            var deterministicAction2 = (float[])deterministicModelRunner.GetAction(1).ContinuousActions.Array.Clone();
            // Deterministic action selection should output same action everytime
            Assert.IsTrue(Enumerable.SequenceEqual(deterministicAction1, deterministicAction2, new FloatThresholdComparer(0.001f)));
            modelRunner.Dispose();
        }
    }
}