File size: 23,309 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
using System.Linq;
using NUnit.Framework;
using UnityEngine;
using UnityEditor;
using Unity.Barracuda;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Sensors;
using Unity.MLAgents.Policies;

namespace Unity.MLAgents.Tests
{
    public class Test3DSensorComponent : SensorComponent
    {
        public ISensor Sensor;

        public override ISensor[] CreateSensors()
        {
            return new ISensor[] { Sensor };
        }
    }

    public class Test3DSensor : ISensor, IBuiltInSensor
    {
        int m_Width;
        int m_Height;
        int m_Channels;
        string m_Name;
        // Dummy value for the IBuiltInSensor interface
        public const int k_BuiltInSensorType = -42;

        public Test3DSensor(string name, int width, int height, int channels)
        {
            m_Width = width;
            m_Height = height;
            m_Channels = channels;
            m_Name = name;
        }

        public ObservationSpec GetObservationSpec()
        {
            return ObservationSpec.Visual(m_Height, m_Width, m_Channels);
        }

        public int Write(ObservationWriter writer)
        {
            for (int i = 0; i < m_Width * m_Height * m_Channels; i++)
            {
                writer[i] = 0.0f;
            }
            return m_Width * m_Height * m_Channels;
        }

        public byte[] GetCompressedObservation()
        {
            return new byte[0];
        }

        public void Update() { }
        public void Reset() { }

        public CompressionSpec GetCompressionSpec()
        {
            return CompressionSpec.Default();
        }

        public string GetName()
        {
            return m_Name;
        }

        public BuiltInSensorType GetBuiltInSensorType()
        {
            return (BuiltInSensorType)k_BuiltInSensorType;
        }
    }

    [TestFixture]
    public class ParameterLoaderTest
    {
        const string k_discrete_ONNX_v2 = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete_rank2_vector_v2_0.onnx";
        const string k_hybrid_ONNX_recurr_v2 = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis8vec_2c_2_3d_v2_0.onnx";


        // ONNX model with continuous/discrete action output (support hybrid action)
        const string k_continuousONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_v1_0.onnx";
        const string k_discreteONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_obsolete_recurr_v1_0.onnx";
        const string k_hybridONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis53vec_3c_2daction_v1_0.onnx";
        // NN model with single action output (deprecated, does not support hybrid action).
        // Same BrainParameters settings as the corresponding ONNX model.
        const string k_continuousNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_deprecated_v1_0.nn";
        const string k_discreteNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_recurr_deprecated_v1_0.nn";

        NNModel rank2ONNXModel;
        NNModel hybridRecurrV2Model;
        NNModel continuousONNXModel;
        NNModel discreteONNXModel;
        NNModel hybridONNXModel;
        NNModel continuousNNModel;
        NNModel discreteNNModel;
        Test3DSensorComponent sensor_21_20_3;
        Test3DSensorComponent sensor_20_22_3;
        BufferSensor sensor_23_20;
        VectorSensor sensor_8;
        VectorSensor sensor_10;

        BrainParameters GetContinuous2vis8vec2actionBrainParameters()
        {
            var validBrainParameters = new BrainParameters();
            validBrainParameters.VectorObservationSize = 8;
            validBrainParameters.NumStackedVectorObservations = 1;
            validBrainParameters.ActionSpec = ActionSpec.MakeContinuous(2);
            return validBrainParameters;
        }

        BrainParameters GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters()
        {
            var validBrainParameters = new BrainParameters();
            validBrainParameters.VectorObservationSize = 0;
            validBrainParameters.NumStackedVectorObservations = 1;
            validBrainParameters.ActionSpec = ActionSpec.MakeDiscrete(2, 3);
            return validBrainParameters;
        }

        BrainParameters GetHybridBrainParameters()
        {
            var validBrainParameters = new BrainParameters();
            validBrainParameters.VectorObservationSize = 53;
            validBrainParameters.NumStackedVectorObservations = 1;
            validBrainParameters.ActionSpec = new ActionSpec(3, new[] { 2 });
            return validBrainParameters;
        }

        BrainParameters GetRank2BrainParameters()
        {
            var validBrainParameters = new BrainParameters();
            validBrainParameters.VectorObservationSize = 4;
            validBrainParameters.NumStackedVectorObservations = 2;
            validBrainParameters.ActionSpec = ActionSpec.MakeDiscrete(3, 3, 3);
            return validBrainParameters;
        }

        BrainParameters GetRecurrHybridBrainParameters()
        {
            var validBrainParameters = new BrainParameters();
            validBrainParameters.VectorObservationSize = 8;
            validBrainParameters.NumStackedVectorObservations = 1;
            validBrainParameters.ActionSpec = new ActionSpec(2, new int[] { 2, 3 });
            return validBrainParameters;
        }

        [SetUp]
        public void SetUp()
        {
            continuousONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousONNXPath, typeof(NNModel));
            discreteONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteONNXPath, typeof(NNModel));
            hybridONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybridONNXPath, typeof(NNModel));
            continuousNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousNNPath, typeof(NNModel));
            discreteNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteNNPath, typeof(NNModel));
            rank2ONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discrete_ONNX_v2, typeof(NNModel));
            hybridRecurrV2Model = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybrid_ONNX_recurr_v2, typeof(NNModel));
            var go = new GameObject("SensorA");
            sensor_21_20_3 = go.AddComponent<Test3DSensorComponent>();
            sensor_21_20_3.Sensor = new Test3DSensor("SensorA", 21, 20, 3);
            sensor_20_22_3 = go.AddComponent<Test3DSensorComponent>();
            sensor_20_22_3.Sensor = new Test3DSensor("SensorA", 20, 22, 3);
            sensor_23_20 = new BufferSensor(20, 23, "BufferSensor");
            sensor_8 = new VectorSensor(8, "VectorSensor8");
            sensor_10 = new VectorSensor(10, "VectorSensor10");
        }

        [Test]
        public void TestModelExist()
        {
            Assert.IsNotNull(continuousONNXModel);
            Assert.IsNotNull(discreteONNXModel);
            Assert.IsNotNull(hybridONNXModel);
            Assert.IsNotNull(continuousNNModel);
            Assert.IsNotNull(discreteNNModel);
            Assert.IsNotNull(rank2ONNXModel);
            Assert.IsNotNull(hybridRecurrV2Model);
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestGetInputTensorsContinuous(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
            var inputNames = model.GetInputNames();
            // Model should contain 3 inputs : vector, visual 1 and visual 2
            Assert.AreEqual(3, inputNames.Count());
            Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames);
            Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames);
            Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "1", inputNames);

            Assert.AreEqual(2, model.GetNumVisualInputs());

            // Test if the model is null
            model = null;
            Assert.AreEqual(0, model.GetInputTensors().Count);
            Assert.AreEqual(0, model.GetNumVisualInputs());
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestGetInputTensorsDiscrete(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
            var inputNames = model.GetInputNames();
            // Model should contain 2 inputs : recurrent and visual 1

            Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames);
            // TODO :There are some memory tensors as well
        }

        [Test]
        public void TestGetInputTensorsHybrid()
        {
            var model = ModelLoader.Load(hybridONNXModel);
            var inputNames = model.GetInputNames();
            Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames);
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestGetOutputTensorsContinuous(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
            var outputNames = model.GetOutputNames();
            var actionOutputName = useDeprecatedNNModel ? TensorNames.ActionOutputDeprecated : TensorNames.ContinuousActionOutput;
            Assert.Contains(actionOutputName, outputNames);
            Assert.AreEqual(1, outputNames.Count());

            model = null;
            Assert.AreEqual(0, model.GetOutputNames().Count());
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestGetOutputTensorsDiscrete(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
            var outputNames = model.GetOutputNames();
            var actionOutputName = useDeprecatedNNModel ? TensorNames.ActionOutputDeprecated : TensorNames.DiscreteActionOutput;
            Assert.Contains(actionOutputName, outputNames);
            // TODO : There are some memory tensors as well
        }

        [Test]
        public void TestGetOutputTensorsHybrid()
        {
            var model = ModelLoader.Load(hybridONNXModel);
            var outputNames = model.GetOutputNames();

            Assert.AreEqual(2, outputNames.Count());
            Assert.Contains(TensorNames.ContinuousActionOutput, outputNames);
            Assert.Contains(TensorNames.DiscreteActionOutput, outputNames);

            model = null;
            Assert.AreEqual(0, model.GetOutputNames().Count());
        }

        [Test]
        public void TestCheckModelRank2()
        {
            var model = ModelLoader.Load(rank2ONNXModel);
            var validBrainParameters = GetRank2BrainParameters();

            var errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[] { sensor_23_20, sensor_10, sensor_8 }, new ActuatorComponent[0]
            );
            Assert.AreEqual(0, errors.Count()); // There should not be any errors

            errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[] { sensor_23_20, sensor_10 }, new ActuatorComponent[0]
            );
            Assert.AreNotEqual(0, errors.Count()); // Wrong number of sensors

            errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[] { new BufferSensor(20, 40, "BufferSensor"), sensor_10, sensor_8 }, new ActuatorComponent[0]
            );
            Assert.AreNotEqual(0, errors.Count()); // Wrong buffer sensor size

            errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[] { sensor_23_20, sensor_10, sensor_10 }, new ActuatorComponent[0]
            );
            Assert.AreNotEqual(0, errors.Count()); // Wrong vector sensor size
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestCheckModelValidContinuous(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
            var validBrainParameters = GetContinuous2vis8vec2actionBrainParameters();

            var errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[]
                {
                    new VectorSensor(8),
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.AreEqual(0, errors.Count()); // There should not be any errors
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestCheckModelValidDiscrete(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
            var validBrainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();

            var errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[] { sensor_21_20_3.CreateSensors()[0] }, new ActuatorComponent[0]
            );
            foreach (var e in errors)
            {
                Debug.Log(e.Message);
            }
            Assert.Greater(errors.Count(), 0); // There should be an error since LSTM v1.x is not supported
        }

        [Test]
        public void TestCheckModelValidRecurrent()
        {
            var model = ModelLoader.Load(hybridRecurrV2Model);
            var num_errors = 0; // A model trained with v2 should not raise errors
            var validBrainParameters = GetRecurrHybridBrainParameters();

            var errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[] { sensor_8 }, new ActuatorComponent[0]
            );
            Assert.AreEqual(num_errors, errors.Count()); // There should not be any errors

            var invalidBrainParameters = GetRecurrHybridBrainParameters();
            invalidBrainParameters.ActionSpec = new ActionSpec(1, new int[] { 2, 3 });
            errors = BarracudaModelParamLoader.CheckModel(
                model, invalidBrainParameters,
                new ISensor[] { sensor_8 }, new ActuatorComponent[0]
            );
            Assert.AreEqual(1, errors.Count()); // 1 continuous action instead of 2

            invalidBrainParameters.ActionSpec = new ActionSpec(2, new int[] { 3, 2 });
            errors = BarracudaModelParamLoader.CheckModel(
                model, invalidBrainParameters,
                new ISensor[] { sensor_8 }, new ActuatorComponent[0]
            );
            Assert.AreEqual(1, errors.Count()); // Discrete action branches flipped
        }

        [Test]
        public void TestCheckModelValidHybrid()
        {
            var model = ModelLoader.Load(hybridONNXModel);
            var validBrainParameters = GetHybridBrainParameters();

            var errors = BarracudaModelParamLoader.CheckModel(
                model, validBrainParameters,
                new ISensor[]
                {
                    new VectorSensor(validBrainParameters.VectorObservationSize)
                }, new ActuatorComponent[0]
            );
            Assert.AreEqual(0, errors.Count()); // There should not be any errors
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestCheckModelThrowsVectorObservationContinuous(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);

            var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.VectorObservationSize = 9; // Invalid observation
            var errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters,
                new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);

            brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.NumStackedVectorObservations = 2;// Invalid stacking
            errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters,
                new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestCheckModelThrowsVectorObservationDiscrete(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);

            var brainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
            brainParameters.VectorObservationSize = 1; // Invalid observation
            var errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters, new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }

        [Test]
        public void TestCheckModelThrowsVectorObservationHybrid()
        {
            var model = ModelLoader.Load(hybridONNXModel);

            var brainParameters = GetHybridBrainParameters();
            brainParameters.VectorObservationSize = 9; // Invalid observation
            var errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters,
                new ISensor[] { }, new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);

            brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.NumStackedVectorObservations = 2;// Invalid stacking
            errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters,
                new ISensor[] { }, new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestCheckModelThrowsActionContinuous(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);

            var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.ActionSpec = ActionSpec.MakeContinuous(3); // Invalid action
            var errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters, new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);

            brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.ActionSpec = ActionSpec.MakeDiscrete(3); // Invalid SpaceType
            errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters, new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }

        [TestCase(true)]
        [TestCase(false)]
        public void TestCheckModelThrowsActionDiscrete(bool useDeprecatedNNModel)
        {
            var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);

            var brainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
            brainParameters.ActionSpec = ActionSpec.MakeDiscrete(3, 3); // Invalid action
            var errors = BarracudaModelParamLoader.CheckModel(
                model, brainParameters,
                new ISensor[] { sensor_21_20_3.CreateSensors()[0] },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);

            brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.ActionSpec = ActionSpec.MakeContinuous(2); // Invalid SpaceType
            errors = BarracudaModelParamLoader.CheckModel(
                model,
                brainParameters,
                new ISensor[] { sensor_21_20_3.CreateSensors()[0] },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }

        [Test]
        public void TestCheckModelThrowsActionHybrid()
        {
            var model = ModelLoader.Load(hybridONNXModel);

            var brainParameters = GetHybridBrainParameters();
            brainParameters.ActionSpec = new ActionSpec(3, new[] { 3 }); // Invalid discrete action size
            var errors = BarracudaModelParamLoader.CheckModel(
                model,
                brainParameters,
                new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);

            brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            brainParameters.ActionSpec = ActionSpec.MakeDiscrete(2); // Missing continuous action
            errors = BarracudaModelParamLoader.CheckModel(
                model,
                brainParameters,
                new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }

        [Test]
        public void TestCheckModelThrowsNoModel()
        {
            var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
            var errors = BarracudaModelParamLoader.CheckModel(
                null,
                brainParameters,
                new ISensor[]
                {
                    sensor_21_20_3.CreateSensors()[0],
                    sensor_20_22_3.CreateSensors()[0]
                },
                new ActuatorComponent[0]
            );
            Assert.Greater(errors.Count(), 0);
        }
    }
}