File size: 23,309 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
using System.Linq;
using NUnit.Framework;
using UnityEngine;
using UnityEditor;
using Unity.Barracuda;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Sensors;
using Unity.MLAgents.Policies;
namespace Unity.MLAgents.Tests
{
public class Test3DSensorComponent : SensorComponent
{
public ISensor Sensor;
public override ISensor[] CreateSensors()
{
return new ISensor[] { Sensor };
}
}
public class Test3DSensor : ISensor, IBuiltInSensor
{
int m_Width;
int m_Height;
int m_Channels;
string m_Name;
// Dummy value for the IBuiltInSensor interface
public const int k_BuiltInSensorType = -42;
public Test3DSensor(string name, int width, int height, int channels)
{
m_Width = width;
m_Height = height;
m_Channels = channels;
m_Name = name;
}
public ObservationSpec GetObservationSpec()
{
return ObservationSpec.Visual(m_Height, m_Width, m_Channels);
}
public int Write(ObservationWriter writer)
{
for (int i = 0; i < m_Width * m_Height * m_Channels; i++)
{
writer[i] = 0.0f;
}
return m_Width * m_Height * m_Channels;
}
public byte[] GetCompressedObservation()
{
return new byte[0];
}
public void Update() { }
public void Reset() { }
public CompressionSpec GetCompressionSpec()
{
return CompressionSpec.Default();
}
public string GetName()
{
return m_Name;
}
public BuiltInSensorType GetBuiltInSensorType()
{
return (BuiltInSensorType)k_BuiltInSensorType;
}
}
[TestFixture]
public class ParameterLoaderTest
{
const string k_discrete_ONNX_v2 = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete_rank2_vector_v2_0.onnx";
const string k_hybrid_ONNX_recurr_v2 = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis8vec_2c_2_3d_v2_0.onnx";
// ONNX model with continuous/discrete action output (support hybrid action)
const string k_continuousONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_v1_0.onnx";
const string k_discreteONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_obsolete_recurr_v1_0.onnx";
const string k_hybridONNXPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/hybrid0vis53vec_3c_2daction_v1_0.onnx";
// NN model with single action output (deprecated, does not support hybrid action).
// Same BrainParameters settings as the corresponding ONNX model.
const string k_continuousNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/continuous2vis8vec2action_deprecated_v1_0.nn";
const string k_discreteNNPath = "Packages/com.unity.ml-agents/Tests/Editor/TestModels/discrete1vis0vec_2_3action_recurr_deprecated_v1_0.nn";
NNModel rank2ONNXModel;
NNModel hybridRecurrV2Model;
NNModel continuousONNXModel;
NNModel discreteONNXModel;
NNModel hybridONNXModel;
NNModel continuousNNModel;
NNModel discreteNNModel;
Test3DSensorComponent sensor_21_20_3;
Test3DSensorComponent sensor_20_22_3;
BufferSensor sensor_23_20;
VectorSensor sensor_8;
VectorSensor sensor_10;
BrainParameters GetContinuous2vis8vec2actionBrainParameters()
{
var validBrainParameters = new BrainParameters();
validBrainParameters.VectorObservationSize = 8;
validBrainParameters.NumStackedVectorObservations = 1;
validBrainParameters.ActionSpec = ActionSpec.MakeContinuous(2);
return validBrainParameters;
}
BrainParameters GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters()
{
var validBrainParameters = new BrainParameters();
validBrainParameters.VectorObservationSize = 0;
validBrainParameters.NumStackedVectorObservations = 1;
validBrainParameters.ActionSpec = ActionSpec.MakeDiscrete(2, 3);
return validBrainParameters;
}
BrainParameters GetHybridBrainParameters()
{
var validBrainParameters = new BrainParameters();
validBrainParameters.VectorObservationSize = 53;
validBrainParameters.NumStackedVectorObservations = 1;
validBrainParameters.ActionSpec = new ActionSpec(3, new[] { 2 });
return validBrainParameters;
}
BrainParameters GetRank2BrainParameters()
{
var validBrainParameters = new BrainParameters();
validBrainParameters.VectorObservationSize = 4;
validBrainParameters.NumStackedVectorObservations = 2;
validBrainParameters.ActionSpec = ActionSpec.MakeDiscrete(3, 3, 3);
return validBrainParameters;
}
BrainParameters GetRecurrHybridBrainParameters()
{
var validBrainParameters = new BrainParameters();
validBrainParameters.VectorObservationSize = 8;
validBrainParameters.NumStackedVectorObservations = 1;
validBrainParameters.ActionSpec = new ActionSpec(2, new int[] { 2, 3 });
return validBrainParameters;
}
[SetUp]
public void SetUp()
{
continuousONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousONNXPath, typeof(NNModel));
discreteONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteONNXPath, typeof(NNModel));
hybridONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybridONNXPath, typeof(NNModel));
continuousNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_continuousNNPath, typeof(NNModel));
discreteNNModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discreteNNPath, typeof(NNModel));
rank2ONNXModel = (NNModel)AssetDatabase.LoadAssetAtPath(k_discrete_ONNX_v2, typeof(NNModel));
hybridRecurrV2Model = (NNModel)AssetDatabase.LoadAssetAtPath(k_hybrid_ONNX_recurr_v2, typeof(NNModel));
var go = new GameObject("SensorA");
sensor_21_20_3 = go.AddComponent<Test3DSensorComponent>();
sensor_21_20_3.Sensor = new Test3DSensor("SensorA", 21, 20, 3);
sensor_20_22_3 = go.AddComponent<Test3DSensorComponent>();
sensor_20_22_3.Sensor = new Test3DSensor("SensorA", 20, 22, 3);
sensor_23_20 = new BufferSensor(20, 23, "BufferSensor");
sensor_8 = new VectorSensor(8, "VectorSensor8");
sensor_10 = new VectorSensor(10, "VectorSensor10");
}
[Test]
public void TestModelExist()
{
Assert.IsNotNull(continuousONNXModel);
Assert.IsNotNull(discreteONNXModel);
Assert.IsNotNull(hybridONNXModel);
Assert.IsNotNull(continuousNNModel);
Assert.IsNotNull(discreteNNModel);
Assert.IsNotNull(rank2ONNXModel);
Assert.IsNotNull(hybridRecurrV2Model);
}
[TestCase(true)]
[TestCase(false)]
public void TestGetInputTensorsContinuous(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
var inputNames = model.GetInputNames();
// Model should contain 3 inputs : vector, visual 1 and visual 2
Assert.AreEqual(3, inputNames.Count());
Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames);
Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames);
Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "1", inputNames);
Assert.AreEqual(2, model.GetNumVisualInputs());
// Test if the model is null
model = null;
Assert.AreEqual(0, model.GetInputTensors().Count);
Assert.AreEqual(0, model.GetNumVisualInputs());
}
[TestCase(true)]
[TestCase(false)]
public void TestGetInputTensorsDiscrete(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
var inputNames = model.GetInputNames();
// Model should contain 2 inputs : recurrent and visual 1
Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames);
// TODO :There are some memory tensors as well
}
[Test]
public void TestGetInputTensorsHybrid()
{
var model = ModelLoader.Load(hybridONNXModel);
var inputNames = model.GetInputNames();
Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames);
}
[TestCase(true)]
[TestCase(false)]
public void TestGetOutputTensorsContinuous(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
var outputNames = model.GetOutputNames();
var actionOutputName = useDeprecatedNNModel ? TensorNames.ActionOutputDeprecated : TensorNames.ContinuousActionOutput;
Assert.Contains(actionOutputName, outputNames);
Assert.AreEqual(1, outputNames.Count());
model = null;
Assert.AreEqual(0, model.GetOutputNames().Count());
}
[TestCase(true)]
[TestCase(false)]
public void TestGetOutputTensorsDiscrete(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
var outputNames = model.GetOutputNames();
var actionOutputName = useDeprecatedNNModel ? TensorNames.ActionOutputDeprecated : TensorNames.DiscreteActionOutput;
Assert.Contains(actionOutputName, outputNames);
// TODO : There are some memory tensors as well
}
[Test]
public void TestGetOutputTensorsHybrid()
{
var model = ModelLoader.Load(hybridONNXModel);
var outputNames = model.GetOutputNames();
Assert.AreEqual(2, outputNames.Count());
Assert.Contains(TensorNames.ContinuousActionOutput, outputNames);
Assert.Contains(TensorNames.DiscreteActionOutput, outputNames);
model = null;
Assert.AreEqual(0, model.GetOutputNames().Count());
}
[Test]
public void TestCheckModelRank2()
{
var model = ModelLoader.Load(rank2ONNXModel);
var validBrainParameters = GetRank2BrainParameters();
var errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[] { sensor_23_20, sensor_10, sensor_8 }, new ActuatorComponent[0]
);
Assert.AreEqual(0, errors.Count()); // There should not be any errors
errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[] { sensor_23_20, sensor_10 }, new ActuatorComponent[0]
);
Assert.AreNotEqual(0, errors.Count()); // Wrong number of sensors
errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[] { new BufferSensor(20, 40, "BufferSensor"), sensor_10, sensor_8 }, new ActuatorComponent[0]
);
Assert.AreNotEqual(0, errors.Count()); // Wrong buffer sensor size
errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[] { sensor_23_20, sensor_10, sensor_10 }, new ActuatorComponent[0]
);
Assert.AreNotEqual(0, errors.Count()); // Wrong vector sensor size
}
[TestCase(true)]
[TestCase(false)]
public void TestCheckModelValidContinuous(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
var validBrainParameters = GetContinuous2vis8vec2actionBrainParameters();
var errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[]
{
new VectorSensor(8),
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.AreEqual(0, errors.Count()); // There should not be any errors
}
[TestCase(true)]
[TestCase(false)]
public void TestCheckModelValidDiscrete(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
var validBrainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
var errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[] { sensor_21_20_3.CreateSensors()[0] }, new ActuatorComponent[0]
);
foreach (var e in errors)
{
Debug.Log(e.Message);
}
Assert.Greater(errors.Count(), 0); // There should be an error since LSTM v1.x is not supported
}
[Test]
public void TestCheckModelValidRecurrent()
{
var model = ModelLoader.Load(hybridRecurrV2Model);
var num_errors = 0; // A model trained with v2 should not raise errors
var validBrainParameters = GetRecurrHybridBrainParameters();
var errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[] { sensor_8 }, new ActuatorComponent[0]
);
Assert.AreEqual(num_errors, errors.Count()); // There should not be any errors
var invalidBrainParameters = GetRecurrHybridBrainParameters();
invalidBrainParameters.ActionSpec = new ActionSpec(1, new int[] { 2, 3 });
errors = BarracudaModelParamLoader.CheckModel(
model, invalidBrainParameters,
new ISensor[] { sensor_8 }, new ActuatorComponent[0]
);
Assert.AreEqual(1, errors.Count()); // 1 continuous action instead of 2
invalidBrainParameters.ActionSpec = new ActionSpec(2, new int[] { 3, 2 });
errors = BarracudaModelParamLoader.CheckModel(
model, invalidBrainParameters,
new ISensor[] { sensor_8 }, new ActuatorComponent[0]
);
Assert.AreEqual(1, errors.Count()); // Discrete action branches flipped
}
[Test]
public void TestCheckModelValidHybrid()
{
var model = ModelLoader.Load(hybridONNXModel);
var validBrainParameters = GetHybridBrainParameters();
var errors = BarracudaModelParamLoader.CheckModel(
model, validBrainParameters,
new ISensor[]
{
new VectorSensor(validBrainParameters.VectorObservationSize)
}, new ActuatorComponent[0]
);
Assert.AreEqual(0, errors.Count()); // There should not be any errors
}
[TestCase(true)]
[TestCase(false)]
public void TestCheckModelThrowsVectorObservationContinuous(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.VectorObservationSize = 9; // Invalid observation
var errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters,
new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.NumStackedVectorObservations = 2;// Invalid stacking
errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters,
new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
[TestCase(true)]
[TestCase(false)]
public void TestCheckModelThrowsVectorObservationDiscrete(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
var brainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
brainParameters.VectorObservationSize = 1; // Invalid observation
var errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters, new ISensor[]
{
sensor_21_20_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
[Test]
public void TestCheckModelThrowsVectorObservationHybrid()
{
var model = ModelLoader.Load(hybridONNXModel);
var brainParameters = GetHybridBrainParameters();
brainParameters.VectorObservationSize = 9; // Invalid observation
var errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters,
new ISensor[] { }, new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.NumStackedVectorObservations = 2;// Invalid stacking
errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters,
new ISensor[] { }, new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
[TestCase(true)]
[TestCase(false)]
public void TestCheckModelThrowsActionContinuous(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(continuousNNModel) : ModelLoader.Load(continuousONNXModel);
var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.ActionSpec = ActionSpec.MakeContinuous(3); // Invalid action
var errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters, new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.ActionSpec = ActionSpec.MakeDiscrete(3); // Invalid SpaceType
errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters, new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
[TestCase(true)]
[TestCase(false)]
public void TestCheckModelThrowsActionDiscrete(bool useDeprecatedNNModel)
{
var model = useDeprecatedNNModel ? ModelLoader.Load(discreteNNModel) : ModelLoader.Load(discreteONNXModel);
var brainParameters = GetDiscrete1vis0vec_2_3action_recurrModelBrainParameters();
brainParameters.ActionSpec = ActionSpec.MakeDiscrete(3, 3); // Invalid action
var errors = BarracudaModelParamLoader.CheckModel(
model, brainParameters,
new ISensor[] { sensor_21_20_3.CreateSensors()[0] },
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.ActionSpec = ActionSpec.MakeContinuous(2); // Invalid SpaceType
errors = BarracudaModelParamLoader.CheckModel(
model,
brainParameters,
new ISensor[] { sensor_21_20_3.CreateSensors()[0] },
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
[Test]
public void TestCheckModelThrowsActionHybrid()
{
var model = ModelLoader.Load(hybridONNXModel);
var brainParameters = GetHybridBrainParameters();
brainParameters.ActionSpec = new ActionSpec(3, new[] { 3 }); // Invalid discrete action size
var errors = BarracudaModelParamLoader.CheckModel(
model,
brainParameters,
new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
brainParameters = GetContinuous2vis8vec2actionBrainParameters();
brainParameters.ActionSpec = ActionSpec.MakeDiscrete(2); // Missing continuous action
errors = BarracudaModelParamLoader.CheckModel(
model,
brainParameters,
new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
[Test]
public void TestCheckModelThrowsNoModel()
{
var brainParameters = GetContinuous2vis8vec2actionBrainParameters();
var errors = BarracudaModelParamLoader.CheckModel(
null,
brainParameters,
new ISensor[]
{
sensor_21_20_3.CreateSensors()[0],
sensor_20_22_3.CreateSensors()[0]
},
new ActuatorComponent[0]
);
Assert.Greater(errors.Count(), 0);
}
}
}
|