File size: 8,712 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# ML-Agents PettingZoo Wrapper"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
    "#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
    "\n",
    "import os\n",
    "from IPython.display import HTML, display\n",
    "\n",
    "def progress(value, max=100):\n",
    "    return HTML(\"\"\"\n",
    "        <progress\n",
    "            value='{value}'\n",
    "            max='{max}',\n",
    "            style='width: 100%'\n",
    "        >\n",
    "            {value}\n",
    "        </progress>\n",
    "    \"\"\".format(value=value, max=max))\n",
    "\n",
    "pro_bar = display(progress(0, 100), display_id=True)\n",
    "\n",
    "try:\n",
    "  import google.colab\n",
    "  INSTALL_XVFB = True\n",
    "except ImportError:\n",
    "  INSTALL_XVFB = 'COLAB_ALWAYS_INSTALL_XVFB' in os.environ\n",
    "\n",
    "if INSTALL_XVFB:\n",
    "  with open('frame-buffer', 'w') as writefile:\n",
    "    writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
    "XVFB=/usr/bin/Xvfb\n",
    "XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
    "PIDFILE=./frame-buffer.pid\n",
    "case \"$1\" in\n",
    "  start)\n",
    "    echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
    "    /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
    "    echo \".\"\n",
    "    ;;\n",
    "  stop)\n",
    "    echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
    "    /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
    "    rm $PIDFILE\n",
    "    echo \".\"\n",
    "    ;;\n",
    "  restart)\n",
    "    $0 stop\n",
    "    $0 start\n",
    "    ;;\n",
    "  *)\n",
    "        echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
    "        exit 1\n",
    "esac\n",
    "exit 0\n",
    "    \"\"\")\n",
    "  pro_bar.update(progress(5, 100))\n",
    "  !apt-get install daemon >/dev/null 2>&1\n",
    "  pro_bar.update(progress(10, 100))\n",
    "  !apt-get install wget >/dev/null 2>&1\n",
    "  pro_bar.update(progress(20, 100))\n",
    "  !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
    "  pro_bar.update(progress(30, 100))\n",
    "  !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb >/dev/null 2>&1\n",
    "  pro_bar.update(progress(40, 100))\n",
    "  !dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
    "  pro_bar.update(progress(50, 100))\n",
    "  !dpkg -i xvfb.deb >/dev/null 2>&1\n",
    "  pro_bar.update(progress(70, 100))\n",
    "  !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
    "  pro_bar.update(progress(80, 100))\n",
    "  !rm xvfb.deb\n",
    "  pro_bar.update(progress(90, 100))\n",
    "  !bash frame-buffer start\n",
    "  os.environ[\"DISPLAY\"] = \":1\"\n",
    "pro_bar.update(progress(100, 100))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Installing ml-agents"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "try:\n",
    "  import mlagents\n",
    "  print(\"ml-agents already installed\")\n",
    "except ImportError:\n",
    "  !git clone -b main --single-branch https://github.com/Unity-Technologies/ml-agents.git\n",
    "  !python -m pip install -q ./ml-agents/ml-agents-envs\n",
    "  !python -m pip install -q ./ml-agents/ml-agents\n",
    "  print(\"Installed ml-agents\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run the Environment"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true,
    "tags": []
   },
   "source": [
    "List of available environments:\n",
    "* Basic\n",
    "* ThreeDBall\n",
    "* ThreeDBallHard\n",
    "* GridWorld\n",
    "* Hallway\n",
    "* VisualHallway\n",
    "* CrawlerDynamicTarget\n",
    "* CrawlerStaticTarget\n",
    "* Bouncer\n",
    "* SoccerTwos\n",
    "* PushBlock\n",
    "* VisualPushBlock\n",
    "* WallJump\n",
    "* Tennis\n",
    "* Reacher\n",
    "* Pyramids\n",
    "* VisualPyramids\n",
    "* Walker\n",
    "* FoodCollector\n",
    "* VisualFoodCollector\n",
    "* StrikersVsGoalie\n",
    "* WormStaticTarget\n",
    "* WormDynamicTarget"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Start Environment with PettingZoo Wrapper"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "YSf-WhxbqtLw"
   },
   "outputs": [],
   "source": [
    "# -----------------\n",
    "# This code is used to close an env that might not have been closed before\n",
    "try:\n",
    "  env.close()\n",
    "except:\n",
    "  pass\n",
    "# -----------------\n",
    "\n",
    "import numpy as np\n",
    "from mlagents_envs.envs import StrikersVsGoalie # import unity environment\n",
    "env = StrikersVsGoalie.env()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Stepping the environment\n",
    "\n",
    "Example of interacting with the environment in basic RL loop. It follows the same interface as described in [PettingZoo API page](https://www.pettingzoo.ml/api)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "dhtl0mpeqxYi"
   },
   "outputs": [],
   "source": [
    "num_cycles = 10\n",
    "\n",
    "env.reset()\n",
    "for agent in env.agent_iter(env.num_agents * num_cycles):\n",
    "    prev_observe, reward, done, info = env.last()\n",
    "    if isinstance(prev_observe, dict) and 'action_mask' in prev_observe:\n",
    "        action_mask = prev_observe['action_mask']\n",
    "    if done:\n",
    "        action = None\n",
    "    else:\n",
    "        action = env.action_spaces[agent].sample() # randomly choose an action for example\n",
    "    env.step(action)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Additional Environment API\n",
    "\n",
    "All the API described in the `Additional Environment API` section in the [PettingZoo API page](https://www.pettingzoo.ml/api) are all supported. A few examples are shown below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "# `agents`: a list of the names of all current agents\n",
    "print(\"Agent names:\", env.agents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# `agent_selection`: the currently agent that an action can be taken for.\n",
    "print(\"Current agent:\", env.agent_selection)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# `observation_spaces`: a dict of the observation spaces of every agent, keyed by name.\n",
    "print(\"Observation space of current agent:\", env.observation_spaces[env.agent_selection])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# `action_spaces`: a dict of the observation spaces of every agent, keyed by name.\n",
    "print(\"Action space of current agent:\", env.action_spaces[env.agent_selection])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Close the Environment to free the port it is using"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "a7KatdThq7OV"
   },
   "outputs": [],
   "source": [
    "env.close()"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "name": "Colab-UnityEnvironment-1-Run.ipynb",
   "private_outputs": true,
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}