File size: 12,365 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import atexit
from typing import Optional, List, Set, Dict, Any, Tuple
import numpy as np
from gym import error, spaces
from mlagents_envs.base_env import BaseEnv, ActionTuple
from mlagents_envs.envs.env_helpers import _agent_id_to_behavior, _unwrap_batch_steps


class UnityPettingzooBaseEnv:
    """
    Unity Petting Zoo base environment.
    """

    def __init__(
        self, env: BaseEnv, seed: Optional[int] = None, metadata: Optional[dict] = None
    ):
        super().__init__()
        atexit.register(self.close)
        self._env = env
        self.metadata = metadata
        self._assert_loaded()

        self._agent_index = 0
        self._seed = seed
        self._side_channel_dict = {
            type(v).__name__: v
            for v in self._env._side_channel_manager._side_channels_dict.values()  # type: ignore
        }

        self._live_agents: List[str] = []  # agent id for agents alive
        self._agents: List[str] = []  # all agent id in current step
        self._possible_agents: Set[str] = set()  # all agents that have ever appear
        self._agent_id_to_index: Dict[str, int] = {}  # agent_id: index in decision step
        self._observations: Dict[str, np.ndarray] = {}  # agent_id: obs
        self._dones: Dict[str, bool] = {}  # agent_id: done
        self._rewards: Dict[str, float] = {}  # agent_id: reward
        self._cumm_rewards: Dict[str, float] = {}  # agent_id: reward
        self._infos: Dict[str, Dict] = {}  # agent_id: info
        self._action_spaces: Dict[str, spaces.Space] = {}  # behavior_name: action_space
        self._observation_spaces: Dict[
            str, spaces.Space
        ] = {}  # behavior_name: obs_space
        self._current_action: Dict[str, ActionTuple] = {}  # behavior_name: ActionTuple
        # Take a single step so that the brain information will be sent over
        if not self._env.behavior_specs:
            self._env.step()
            for behavior_name in self._env.behavior_specs.keys():
                _, _, _ = self._batch_update(behavior_name)
        self._update_observation_spaces()
        self._update_action_spaces()

    def _assert_loaded(self) -> None:
        if self._env is None:
            raise error.Error("No environment loaded")

    @property
    def observation_spaces(self) -> Dict[str, spaces.Space]:
        """
        Return the observation spaces of all the agents.
        """
        return {
            agent_id: self._observation_spaces[_agent_id_to_behavior(agent_id)]
            for agent_id in self._possible_agents
        }

    def observation_space(self, agent: str) -> Optional[spaces.Space]:
        """
        The observation space of the current agent.
        """
        behavior_name = _agent_id_to_behavior(agent)
        return self._observation_spaces[behavior_name]

    def _update_observation_spaces(self) -> None:
        self._assert_loaded()
        for behavior_name in self._env.behavior_specs.keys():
            if behavior_name not in self._observation_spaces:
                obs_spec = self._env.behavior_specs[behavior_name].observation_specs
                obs_spaces = tuple(
                    spaces.Box(
                        low=-np.float32(np.inf),
                        high=np.float32(np.inf),
                        shape=spec.shape,
                        dtype=np.float32,
                    )
                    for spec in obs_spec
                )
                if len(obs_spaces) == 1:
                    self._observation_spaces[behavior_name] = obs_spaces[0]
                else:
                    self._observation_spaces[behavior_name] = spaces.Tuple(obs_spaces)

    @property
    def action_spaces(self) -> Dict[str, spaces.Space]:
        """
        Return the action spaces of all the agents.
        """
        return {
            agent_id: self._action_spaces[_agent_id_to_behavior(agent_id)]
            for agent_id in self._possible_agents
        }

    def action_space(self, agent: str) -> Optional[spaces.Space]:
        """
        The action space of the current agent.
        """
        behavior_name = _agent_id_to_behavior(agent)
        return self._action_spaces[behavior_name]

    def _update_action_spaces(self) -> None:
        self._assert_loaded()
        for behavior_name in self._env.behavior_specs.keys():
            if behavior_name not in self._action_spaces:
                act_spec = self._env.behavior_specs[behavior_name].action_spec
                if (
                    act_spec.continuous_size == 0
                    and len(act_spec.discrete_branches) == 0
                ):
                    raise error.Error("No actions found")
                if act_spec.discrete_size == 1:
                    d_space = spaces.Discrete(act_spec.discrete_branches[0])
                    if self._seed is not None:
                        d_space.seed(self._seed)
                    if act_spec.continuous_size == 0:
                        self._action_spaces[behavior_name] = d_space
                        continue
                if act_spec.discrete_size > 0:
                    d_space = spaces.MultiDiscrete(act_spec.discrete_branches)
                    if self._seed is not None:
                        d_space.seed(self._seed)
                    if act_spec.continuous_size == 0:
                        self._action_spaces[behavior_name] = d_space
                        continue
                if act_spec.continuous_size > 0:
                    c_space = spaces.Box(
                        -1, 1, (act_spec.continuous_size,), dtype=np.int32
                    )
                    if self._seed is not None:
                        c_space.seed(self._seed)
                    if len(act_spec.discrete_branches) == 0:
                        self._action_spaces[behavior_name] = c_space
                        continue
                self._action_spaces[behavior_name] = spaces.Tuple((c_space, d_space))

    def _process_action(self, current_agent, action):
        current_action_space = self.action_space(current_agent)
        # Convert actions
        if action is not None:
            if isinstance(action, Tuple):
                action = tuple(np.array(a) for a in action)
            else:
                action = self._action_to_np(current_action_space, action)
            if not current_action_space.contains(action):  # type: ignore
                raise error.Error(
                    f"Invalid action, got {action} but was expecting action from {self.action_space}"
                )
            if isinstance(current_action_space, spaces.Tuple):
                action = ActionTuple(action[0], action[1])
            elif isinstance(current_action_space, spaces.MultiDiscrete):
                action = ActionTuple(None, action)
            elif isinstance(current_action_space, spaces.Discrete):
                action = ActionTuple(None, np.array(action).reshape(1, 1))
            else:
                action = ActionTuple(action, None)

        if not self._dones[current_agent]:
            current_behavior = _agent_id_to_behavior(current_agent)
            current_index = self._agent_id_to_index[current_agent]
            if action.continuous is not None:
                self._current_action[current_behavior].continuous[
                    current_index
                ] = action.continuous[0]
            if action.discrete is not None:
                self._current_action[current_behavior].discrete[
                    current_index
                ] = action.discrete[0]
        else:
            self._live_agents.remove(current_agent)
            del self._observations[current_agent]
            del self._dones[current_agent]
            del self._rewards[current_agent]
            del self._cumm_rewards[current_agent]
            del self._infos[current_agent]

    def _step(self):
        for behavior_name, actions in self._current_action.items():
            self._env.set_actions(behavior_name, actions)
        self._env.step()
        self._reset_states()
        for behavior_name in self._env.behavior_specs.keys():
            dones, rewards, cumulative_rewards = self._batch_update(behavior_name)
            self._dones.update(dones)
            self._rewards.update(rewards)
            self._cumm_rewards.update(cumulative_rewards)
        self._agent_index = 0

    def _cleanup_agents(self):
        for current_agent, done in self.dones.items():
            if done:
                self._live_agents.remove(current_agent)

    @property
    def side_channel(self) -> Dict[str, Any]:
        """
        The side channels of the environment. You can access the side channels
        of an environment with `env.side_channel[<name-of-channel>]`.
        """
        self._assert_loaded()
        return self._side_channel_dict

    @staticmethod
    def _action_to_np(current_action_space, action):
        return np.array(action, dtype=current_action_space.dtype)

    def _create_empty_actions(self, behavior_name, num_agents):
        a_spec = self._env.behavior_specs[behavior_name].action_spec
        return ActionTuple(
            np.zeros((num_agents, a_spec.continuous_size), dtype=np.float32),
            np.zeros((num_agents, len(a_spec.discrete_branches)), dtype=np.int32),
        )

    @property
    def _cumulative_rewards(self):
        return self._cumm_rewards

    def _reset_states(self):
        self._live_agents = []
        self._agents = []
        self._observations = {}
        self._dones = {}
        self._rewards = {}
        self._cumm_rewards = {}
        self._infos = {}
        self._agent_id_to_index = {}

    def reset(self):
        """
        Resets the environment.
        """
        self._assert_loaded()
        self._agent_index = 0
        self._reset_states()
        self._possible_agents = set()
        self._env.reset()
        for behavior_name in self._env.behavior_specs.keys():
            _, _, _ = self._batch_update(behavior_name)
        self._live_agents.sort()  # unnecessary, only for passing API test
        self._dones = {agent: False for agent in self._agents}
        self._rewards = {agent: 0 for agent in self._agents}
        self._cumm_rewards = {agent: 0 for agent in self._agents}

    def _batch_update(self, behavior_name):
        current_batch = self._env.get_steps(behavior_name)
        self._current_action[behavior_name] = self._create_empty_actions(
            behavior_name, len(current_batch[0])
        )
        (
            agents,
            obs,
            dones,
            rewards,
            cumulative_rewards,
            infos,
            id_map,
        ) = _unwrap_batch_steps(current_batch, behavior_name)
        self._live_agents += agents
        self._agents += agents
        self._observations.update(obs)
        self._infos.update(infos)
        self._agent_id_to_index.update(id_map)
        self._possible_agents.update(agents)
        return dones, rewards, cumulative_rewards

    def seed(self, seed=None):
        """
        Reseeds the environment (making the resulting environment deterministic).
        `reset()` must be called after `seed()`, and before `step()`.
        """
        self._seed = seed

    def render(self, mode="human"):
        """
        NOT SUPPORTED.

        Displays a rendered frame from the environment, if supported.
        Alternate render modes in the default environments are `'rgb_array'`
        which returns a numpy array and is supported by all environments outside of classic,
        and `'ansi'` which returns the strings printed (specific to classic environments).
        """
        pass

    @property
    def dones(self):
        return dict(self._dones)

    @property
    def agents(self):
        return sorted(self._live_agents)

    @property
    def rewards(self):
        return dict(self._rewards)

    @property
    def infos(self):
        return dict(self._infos)

    @property
    def possible_agents(self):
        return sorted(self._possible_agents)

    def close(self) -> None:
        """
        Close the environment.
        """
        if self._env is not None:
            self._env.close()
            self._env = None  # type: ignore

    def __del__(self) -> None:
        self.close()

    def state(self):
        pass