File size: 10,414 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from unittest import mock
import pytest
import numpy as np

from gym import spaces

from mlagents_envs.envs.unity_gym_env import UnityToGymWrapper
from mlagents_envs.base_env import (
    BehaviorSpec,
    ActionSpec,
    DecisionSteps,
    TerminalSteps,
    BehaviorMapping,
)
from dummy_config import create_observation_specs_with_shapes


def test_gym_wrapper():
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec()
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(mock_spec)
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )
    env = UnityToGymWrapper(mock_env)
    assert isinstance(env.reset(), np.ndarray)
    actions = env.action_space.sample()
    assert actions.shape[0] == 2
    obs, rew, done, info = env.step(actions)
    assert env.observation_space.contains(obs)
    assert isinstance(obs, np.ndarray)
    assert isinstance(rew, float)
    assert isinstance(done, (bool, np.bool_))
    assert isinstance(info, dict)


def test_branched_flatten():
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec(
        vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3]
    )
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(
        mock_spec, num_agents=1
    )
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )

    env = UnityToGymWrapper(mock_env, flatten_branched=True)
    assert isinstance(env.action_space, spaces.Discrete)
    assert env.action_space.n == 12
    assert env._flattener.lookup_action(0) == [0, 0, 0]
    assert env._flattener.lookup_action(11) == [1, 1, 2]

    # Check that False produces a MultiDiscrete
    env = UnityToGymWrapper(mock_env, flatten_branched=False)
    assert isinstance(env.action_space, spaces.MultiDiscrete)


def test_action_space():
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec(
        vector_action_space_type="discrete", vector_action_space_size=[5]
    )
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(
        mock_spec, num_agents=1
    )
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )

    env = UnityToGymWrapper(mock_env, flatten_branched=True)
    assert isinstance(env.action_space, spaces.Discrete)
    assert env.action_space.n == 5

    env = UnityToGymWrapper(mock_env, flatten_branched=False)
    assert isinstance(env.action_space, spaces.Discrete)
    assert env.action_space.n == 5


def test_action_space_seed():
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec()
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(mock_spec)
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )
    actions = []
    for _ in range(0, 2):
        env = UnityToGymWrapper(mock_env, action_space_seed=1337)
        env.reset()
        actions.append(env.action_space.sample())
    assert (actions[0] == actions[1]).all()


@pytest.mark.parametrize("use_uint8", [True, False], ids=["float", "uint8"])
def test_gym_wrapper_visual(use_uint8):
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec(
        number_visual_observations=1, vector_observation_space_size=0
    )
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(
        mock_spec, number_visual_observations=1
    )
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )

    env = UnityToGymWrapper(mock_env, uint8_visual=use_uint8)
    assert isinstance(env.observation_space, spaces.Box)
    assert isinstance(env.reset(), np.ndarray)
    actions = env.action_space.sample()
    assert actions.shape[0] == 2
    obs, rew, done, info = env.step(actions)
    assert env.observation_space.contains(obs)
    assert isinstance(obs, np.ndarray)
    assert isinstance(rew, float)
    assert isinstance(done, (bool, np.bool_))
    assert isinstance(info, dict)


@pytest.mark.parametrize("use_uint8", [True, False], ids=["float", "uint8"])
def test_gym_wrapper_single_visual_and_vector(use_uint8):
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec(
        number_visual_observations=1,
        vector_observation_space_size=3,
        vector_action_space_size=[2],
    )
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(
        mock_spec, number_visual_observations=1
    )
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )

    env = UnityToGymWrapper(mock_env, uint8_visual=use_uint8, allow_multiple_obs=True)
    assert isinstance(env.observation_space, spaces.Tuple)
    assert len(env.observation_space) == 2
    reset_obs = env.reset()
    assert isinstance(reset_obs, list)
    assert len(reset_obs) == 2
    assert all(isinstance(ob, np.ndarray) for ob in reset_obs)
    assert reset_obs[-1].shape == (3,)
    assert len(reset_obs[0].shape) == 3
    actions = env.action_space.sample()
    assert actions.shape == (2,)
    obs, rew, done, info = env.step(actions)
    assert isinstance(obs, list)
    assert len(obs) == 2
    assert all(isinstance(ob, np.ndarray) for ob in obs)
    assert reset_obs[-1].shape == (3,)
    assert isinstance(rew, float)
    assert isinstance(done, (bool, np.bool_))
    assert isinstance(info, dict)

    # check behavior for allow_multiple_obs = False
    env = UnityToGymWrapper(mock_env, uint8_visual=use_uint8, allow_multiple_obs=False)
    assert isinstance(env.observation_space, spaces.Box)
    reset_obs = env.reset()
    assert isinstance(reset_obs, np.ndarray)
    assert len(reset_obs.shape) == 3
    actions = env.action_space.sample()
    assert actions.shape == (2,)
    obs, rew, done, info = env.step(actions)
    assert isinstance(obs, np.ndarray)


@pytest.mark.parametrize("use_uint8", [True, False], ids=["float", "uint8"])
def test_gym_wrapper_multi_visual_and_vector(use_uint8):
    mock_env = mock.MagicMock()
    mock_spec = create_mock_group_spec(
        number_visual_observations=2,
        vector_observation_space_size=3,
        vector_action_space_size=[2],
    )
    mock_decision_step, mock_terminal_step = create_mock_vector_steps(
        mock_spec, number_visual_observations=2
    )
    setup_mock_unityenvironment(
        mock_env, mock_spec, mock_decision_step, mock_terminal_step
    )

    env = UnityToGymWrapper(mock_env, uint8_visual=use_uint8, allow_multiple_obs=True)
    assert isinstance(env.observation_space, spaces.Tuple)
    assert len(env.observation_space) == 3
    reset_obs = env.reset()
    assert isinstance(reset_obs, list)
    assert len(reset_obs) == 3
    assert all(isinstance(ob, np.ndarray) for ob in reset_obs)
    assert reset_obs[-1].shape == (3,)
    actions = env.action_space.sample()
    assert actions.shape == (2,)
    obs, rew, done, info = env.step(actions)
    assert all(isinstance(ob, np.ndarray) for ob in obs)
    assert isinstance(rew, float)
    assert isinstance(done, (bool, np.bool_))
    assert isinstance(info, dict)

    # check behavior for allow_multiple_obs = False
    env = UnityToGymWrapper(mock_env, uint8_visual=use_uint8, allow_multiple_obs=False)
    assert isinstance(env.observation_space, spaces.Box)
    reset_obs = env.reset()
    assert isinstance(reset_obs, np.ndarray)
    assert len(reset_obs.shape) == 3
    actions = env.action_space.sample()
    assert actions.shape == (2,)
    obs, rew, done, info = env.step(actions)
    assert isinstance(obs, np.ndarray)


# Helper methods


def create_mock_group_spec(
    number_visual_observations=0,
    vector_action_space_type="continuous",
    vector_observation_space_size=3,
    vector_action_space_size=None,
):
    """
    Creates a mock BrainParameters object with parameters.
    """
    # Avoid using mutable object as default param
    if vector_action_space_type == "continuous":
        if vector_action_space_size is None:
            vector_action_space_size = 2
        else:
            vector_action_space_size = vector_action_space_size[0]
        action_spec = ActionSpec.create_continuous(vector_action_space_size)
    else:
        if vector_action_space_size is None:
            vector_action_space_size = (2,)
        else:
            vector_action_space_size = tuple(vector_action_space_size)
        action_spec = ActionSpec.create_discrete(vector_action_space_size)
    obs_shapes = [(vector_observation_space_size,)]
    for _ in range(number_visual_observations):
        obs_shapes += [(8, 8, 3)]
    obs_spec = create_observation_specs_with_shapes(obs_shapes)
    return BehaviorSpec(obs_spec, action_spec)


def create_mock_vector_steps(specs, num_agents=1, number_visual_observations=0):
    """
    Creates a mock BatchedStepResult with vector observations. Imitates constant
    vector observations, rewards, dones, and agents.

    :BehaviorSpecs specs: The BehaviorSpecs for this mock
    :int num_agents: Number of "agents" to imitate in your BatchedStepResult values.
    """
    obs = [np.array([num_agents * [1, 2, 3]], dtype=np.float32).reshape(num_agents, 3)]
    if number_visual_observations:
        obs += [
            np.zeros(shape=(num_agents, 8, 8, 3), dtype=np.float32)
        ] * number_visual_observations
    rewards = np.array(num_agents * [1.0])
    agents = np.array(range(0, num_agents))
    group_id = np.array(num_agents * [0])
    group_rewards = np.array(num_agents * [0.0])
    return (
        DecisionSteps(obs, rewards, agents, None, group_id, group_rewards),
        TerminalSteps.empty(specs),
    )


def setup_mock_unityenvironment(mock_env, mock_spec, mock_decision, mock_termination):
    """
    Takes a mock UnityEnvironment and adds the appropriate properties, defined by the mock
    GroupSpec and BatchedStepResult.

    :Mock mock_env: A mock UnityEnvironment, usually empty.
    :Mock mock_spec: An AgentGroupSpec object that specifies the params of this environment.
    :Mock mock_decision: A DecisionSteps object that will be returned at each step and reset.
    :Mock mock_termination: A TerminationSteps object that will be returned at each step and reset.
    """
    mock_env.behavior_specs = BehaviorMapping({"MockBrain": mock_spec})
    mock_env.get_steps.return_value = (mock_decision, mock_termination)