File size: 8,183 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (A2C)
# Contains an implementation of A2C as described in: https://arxiv.org/abs/1707.06347

from typing import cast

import numpy as np

from mlagents_envs.base_env import BehaviorSpec
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil
from mlagents.trainers.trainer.on_policy_trainer import OnPolicyTrainer
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.trainer.trainer_utils import get_gae
from mlagents.trainers.policy.torch_policy import TorchPolicy
from .a2c_optimizer import A2COptimizer, A2CSettings
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
from mlagents.trainers.settings import TrainerSettings

from mlagents.trainers.torch_entities.networks import SimpleActor, SharedActorCritic

logger = get_logger(__name__)

TRAINER_NAME = "a2c"


class A2CTrainer(OnPolicyTrainer):
    """The A2CTrainer is an implementation of the A2C algorithm."""

    def __init__(
        self,
        behavior_name: str,
        reward_buff_cap: int,
        trainer_settings: TrainerSettings,
        training: bool,
        load: bool,
        seed: int,
        artifact_path: str,
    ):
        """
        Responsible for collecting experiences and training A2C model.
        :param behavior_name: The name of the behavior associated with trainer config
        :param reward_buff_cap: Max reward history to track in the reward buffer
        :param trainer_settings: The parameters for the trainer.
        :param training: Whether the trainer is set for training.
        :param load: Whether the model should be loaded.
        :param seed: The seed the model will be initialized with
        :param artifact_path: The directory within which to store artifacts from this trainer.
        """
        super().__init__(
            behavior_name,
            reward_buff_cap,
            trainer_settings,
            training,
            load,
            seed,
            artifact_path,
        )
        self.hyperparameters: A2CSettings = cast(
            A2CSettings, self.trainer_settings.hyperparameters
        )
        self.shared_critic = self.hyperparameters.shared_critic
        self.policy: TorchPolicy = None  # type: ignore

    def _process_trajectory(self, trajectory: Trajectory) -> None:
        """
        Takes a trajectory and processes it, putting it into the update buffer.
        Processing involves calculating value and advantage targets for model updating step.
        :param trajectory: The Trajectory tuple containing the steps to be processed.
        """
        super()._process_trajectory(trajectory)
        agent_id = trajectory.agent_id  # All the agents should have the same ID

        agent_buffer_trajectory = trajectory.to_agentbuffer()
        # Check if we used group rewards, warn if so.
        self._warn_if_group_reward(agent_buffer_trajectory)

        # Update the normalization
        if self.is_training:
            self.policy.actor.update_normalization(agent_buffer_trajectory)
            self.optimizer.critic.update_normalization(agent_buffer_trajectory)

        # Get all value estimates
        (
            value_estimates,
            value_next,
            value_memories,
        ) = self.optimizer.get_trajectory_value_estimates(
            agent_buffer_trajectory,
            trajectory.next_obs,
            trajectory.done_reached and not trajectory.interrupted,
        )
        if value_memories is not None:
            agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories)

        for name, v in value_estimates.items():
            agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend(
                v
            )
            self._stats_reporter.add_stat(
                f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate",
                np.mean(v),
            )

        # Evaluate all reward functions
        self.collected_rewards["environment"][agent_id] += np.sum(
            agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS]
        )
        for name, reward_signal in self.optimizer.reward_signals.items():
            evaluate_result = (
                reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength
            )
            agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend(
                evaluate_result
            )
            # Report the reward signals
            self.collected_rewards[name][agent_id] += np.sum(evaluate_result)

        # Compute GAE and returns
        tmp_advantages = []
        tmp_returns = []
        for name in self.optimizer.reward_signals:
            bootstrap_value = value_next[name]

            local_rewards = agent_buffer_trajectory[
                RewardSignalUtil.rewards_key(name)
            ].get_batch()
            local_value_estimates = agent_buffer_trajectory[
                RewardSignalUtil.value_estimates_key(name)
            ].get_batch()

            local_advantage = get_gae(
                rewards=local_rewards,
                value_estimates=local_value_estimates,
                value_next=bootstrap_value,
                gamma=self.optimizer.reward_signals[name].gamma,
                lambd=self.hyperparameters.lambd,
            )
            local_return = local_advantage + local_value_estimates
            # This is later use as target for the different value estimates
            agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set(
                local_return
            )
            agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set(
                local_advantage
            )
            tmp_advantages.append(local_advantage)
            tmp_returns.append(local_return)

        # Get global advantages
        global_advantages = list(
            np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0)
        )
        global_returns = list(np.mean(np.array(tmp_returns, dtype=np.float32), axis=0))
        agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages)
        agent_buffer_trajectory[BufferKey.DISCOUNTED_RETURNS].set(global_returns)

        self._append_to_update_buffer(agent_buffer_trajectory)

        # If this was a terminal trajectory, append stats and reset reward collection
        if trajectory.done_reached:
            self._update_end_episode_stats(agent_id, self.optimizer)

    def create_optimizer(self) -> TorchOptimizer:
        """
        Creates an Optimizer object
        """
        return A2COptimizer(  # type: ignore
            cast(TorchPolicy, self.policy), self.trainer_settings  # type: ignore
        )  # type: ignore

    def create_policy(
        self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
    ) -> TorchPolicy:
        """
        Creates a policy with a PyTorch backend and PPO hyperparameters
        :param parsed_behavior_id:
        :param behavior_spec: specifications for policy construction
        :return policy
        """
        actor_cls = SimpleActor
        actor_kwargs = {"conditional_sigma": False, "tanh_squash": False}
        if self.shared_critic:
            reward_signal_configs = self.trainer_settings.reward_signals
            reward_signal_names = [
                key.value for key, _ in reward_signal_configs.items()
            ]
            actor_cls = SharedActorCritic
            actor_kwargs.update({"stream_names": reward_signal_names})

        policy = TorchPolicy(
            self.seed,
            behavior_spec,
            self.trainer_settings.network_settings,
            actor_cls,
            actor_kwargs,
        )
        return policy

    @staticmethod
    def get_settings_type():
        return A2CSettings

    @staticmethod
    def get_trainer_name() -> str:
        return TRAINER_NAME


def get_type_and_setting():
    return {A2CTrainer.get_trainer_name(): A2CTrainer}, {
        A2CTrainer.get_trainer_name(): A2CSettings
    }