File size: 11,201 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from typing import cast
from mlagents.torch_utils import torch, nn, default_device
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.buffer import AgentBuffer, BufferKey, RewardSignalUtil
from mlagents_envs.timers import timed
from typing import List, Dict, Tuple, Optional, Union, Any
from mlagents.trainers.torch_entities.networks import ValueNetwork, Actor
from mlagents_envs.base_env import ActionSpec, ObservationSpec
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.trajectory import ObsUtil
from mlagents.trainers.settings import TrainerSettings, OffPolicyHyperparamSettings
from mlagents.trainers.settings import ScheduleType, NetworkSettings

from mlagents.trainers.torch_entities.networks import Critic
import numpy as np
import attr


# TODO: fix saving to onnx


@attr.s(auto_attribs=True)
class DQNSettings(OffPolicyHyperparamSettings):
    gamma: float = 0.99
    exploration_schedule: ScheduleType = ScheduleType.LINEAR
    exploration_initial_eps: float = 0.1
    exploration_final_eps: float = 0.05
    target_update_interval: int = 10000
    tau: float = 0.005
    steps_per_update: float = 1
    save_replay_buffer: bool = False
    reward_signal_steps_per_update: float = attr.ib()

    @reward_signal_steps_per_update.default
    def _reward_signal_steps_per_update_default(self):
        return self.steps_per_update


class DQNOptimizer(TorchOptimizer):
    def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
        super().__init__(policy, trainer_settings)

        # initialize hyper parameters
        params = list(self.policy.actor.parameters())
        self.optimizer = torch.optim.Adam(
            params, lr=self.trainer_settings.hyperparameters.learning_rate
        )
        self.stream_names = list(self.reward_signals.keys())
        self.gammas = [_val.gamma for _val in trainer_settings.reward_signals.values()]
        self.use_dones_in_backup = {
            name: int(not self.reward_signals[name].ignore_done)
            for name in self.stream_names
        }

        self.hyperparameters: DQNSettings = cast(
            DQNSettings, trainer_settings.hyperparameters
        )
        self.tau = self.hyperparameters.tau
        self.decay_learning_rate = ModelUtils.DecayedValue(
            self.hyperparameters.learning_rate_schedule,
            self.hyperparameters.learning_rate,
            1e-10,
            self.trainer_settings.max_steps,
        )

        self.decay_exploration_rate = ModelUtils.DecayedValue(
            self.hyperparameters.exploration_schedule,
            self.hyperparameters.exploration_initial_eps,
            self.hyperparameters.exploration_final_eps,
            20000,
        )

        # initialize Target Q_network
        self.q_net_target = QNetwork(
            stream_names=self.reward_signals.keys(),
            observation_specs=policy.behavior_spec.observation_specs,
            network_settings=policy.network_settings,
            action_spec=policy.behavior_spec.action_spec,
        )
        ModelUtils.soft_update(self.policy.actor, self.q_net_target, 1.0)

        self.q_net_target.to(default_device())

    @property
    def critic(self):
        return self.q_net_target

    @timed
    def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
        """
        Performs update on model.
        :param batch: Batch of experiences.
        :param num_sequences: Number of sequences to process.
        :return: Results of update.
        """
        # Get decayed parameters
        decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
        exp_rate = self.decay_exploration_rate.get_value(self.policy.get_current_step())
        self.policy.actor.exploration_rate = exp_rate
        rewards = {}
        for name in self.reward_signals:
            rewards[name] = ModelUtils.list_to_tensor(
                batch[RewardSignalUtil.rewards_key(name)]
            )

        n_obs = len(self.policy.behavior_spec.observation_specs)
        current_obs = ObsUtil.from_buffer(batch, n_obs)
        # Convert to tensors
        current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]

        next_obs = ObsUtil.from_buffer_next(batch, n_obs)
        # Convert to tensors
        next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]

        actions = AgentAction.from_buffer(batch)

        dones = ModelUtils.list_to_tensor(batch[BufferKey.DONE])

        current_q_values, _ = self.policy.actor.critic_pass(
            current_obs, sequence_length=self.policy.sequence_length
        )

        qloss = []
        with torch.no_grad():
            greedy_actions = self.policy.actor.get_greedy_action(current_q_values)
            next_q_values_list, _ = self.q_net_target.critic_pass(
                next_obs, sequence_length=self.policy.sequence_length
            )
        for name_i, name in enumerate(rewards.keys()):
            with torch.no_grad():
                next_q_values = torch.gather(
                    next_q_values_list[name], dim=1, index=greedy_actions
                ).squeeze()
                target_q_values = rewards[name] + (
                    (1.0 - self.use_dones_in_backup[name] * dones)
                    * self.gammas[name_i]
                    * next_q_values
                )
                target_q_values = target_q_values.reshape(-1, 1)
            curr_q = torch.gather(
                current_q_values[name], dim=1, index=actions.discrete_tensor
            )
            qloss.append(torch.nn.functional.smooth_l1_loss(curr_q, target_q_values))

        loss = torch.mean(torch.stack(qloss))
        ModelUtils.update_learning_rate(self.optimizer, decay_lr)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        ModelUtils.soft_update(self.policy.actor, self.q_net_target, self.tau)
        update_stats = {
            "Losses/Value Loss": loss.item(),
            "Policy/Learning Rate": decay_lr,
            "Policy/epsilon": exp_rate,
        }

        for reward_provider in self.reward_signals.values():
            update_stats.update(reward_provider.update(batch))
        return update_stats

    def get_modules(self):
        modules = {
            "Optimizer:value_optimizer": self.optimizer,
            "Optimizer:critic": self.critic,
        }
        for reward_provider in self.reward_signals.values():
            modules.update(reward_provider.get_modules())
        return modules


class QNetwork(nn.Module, Actor, Critic):
    MODEL_EXPORT_VERSION = 3

    def __init__(
        self,
        stream_names: List[str],
        observation_specs: List[ObservationSpec],
        network_settings: NetworkSettings,
        action_spec: ActionSpec,
        exploration_initial_eps: float = 1.0,
    ):
        self.exploration_rate = exploration_initial_eps
        nn.Module.__init__(self)
        output_act_size = max(sum(action_spec.discrete_branches), 1)
        self.network_body = ValueNetwork(
            stream_names,
            observation_specs,
            network_settings,
            outputs_per_stream=output_act_size,
        )

        # extra tensors for exporting to ONNX
        self.action_spec = action_spec
        self.version_number = torch.nn.Parameter(
            torch.Tensor([self.MODEL_EXPORT_VERSION]), requires_grad=False
        )
        self.is_continuous_int_deprecated = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.is_continuous())]), requires_grad=False
        )
        self.continuous_act_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
        )
        self.discrete_act_size_vector = torch.nn.Parameter(
            torch.Tensor([self.action_spec.discrete_branches]), requires_grad=False
        )
        self.act_size_vector_deprecated = torch.nn.Parameter(
            torch.Tensor(
                [
                    self.action_spec.continuous_size
                    + sum(self.action_spec.discrete_branches)
                ]
            ),
            requires_grad=False,
        )
        self.memory_size_vector = torch.nn.Parameter(
            torch.Tensor([int(self.network_body.memory_size)]), requires_grad=False
        )

    def update_normalization(self, buffer: AgentBuffer) -> None:
        self.network_body.update_normalization(buffer)

    def critic_pass(
        self,
        inputs: List[torch.Tensor],
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
    ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
        value_outputs, critic_mem_out = self.network_body(
            inputs, memories=memories, sequence_length=sequence_length
        )
        return value_outputs, critic_mem_out

    @property
    def memory_size(self) -> int:
        return self.network_body.memory_size

    def forward(
        self,
        inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
    ) -> Tuple[Union[int, torch.Tensor], ...]:
        out_vals, memories = self.critic_pass(inputs, memories, sequence_length)

        # fixme random action tensor
        export_out = [self.version_number, self.memory_size_vector]

        disc_action_out = self.get_greedy_action(out_vals)
        deterministic_disc_action_out = self.get_random_action(out_vals)
        export_out += [
            disc_action_out,
            self.discrete_act_size_vector,
            deterministic_disc_action_out,
        ]
        return tuple(export_out)

    def get_random_action(self, inputs) -> torch.Tensor:
        action_out = torch.randint(
            0, self.action_spec.discrete_branches[0], (len(inputs), 1)
        )
        return action_out

    @staticmethod
    def get_greedy_action(q_values) -> torch.Tensor:
        all_q = torch.cat([val.unsqueeze(0) for val in q_values.values()])
        return torch.argmax(all_q.sum(dim=0), dim=1, keepdim=True)

    def get_action_and_stats(
        self,
        inputs: List[torch.Tensor],
        masks: Optional[torch.Tensor] = None,
        memories: Optional[torch.Tensor] = None,
        sequence_length: int = 1,
        deterministic=False,
    ) -> Tuple[AgentAction, Dict[str, Any], torch.Tensor]:
        run_out = {}
        if not deterministic and np.random.rand() < self.exploration_rate:
            action_out = self.get_random_action(inputs)
            action_out = AgentAction(None, [action_out])
            run_out["env_action"] = action_out.to_action_tuple()
        else:
            out_vals, _ = self.critic_pass(inputs, memories, sequence_length)
            action_out = self.get_greedy_action(out_vals)
            action_out = AgentAction(None, [action_out])
            run_out["env_action"] = action_out.to_action_tuple()
        return action_out, run_out, torch.Tensor([])