File size: 11,240 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import pytest
import yaml
from mlagents.trainers.exception import TrainerConfigError, TrainerConfigWarning
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager
from mlagents.trainers.settings import (
RunOptions,
UniformSettings,
GaussianSettings,
ConstantSettings,
CompletionCriteriaSettings,
)
test_sampler_config_yaml = """
environment_parameters:
param_1:
sampler_type: uniform
sampler_parameters:
min_value: 0.5
max_value: 10
"""
def test_sampler_conversion():
run_options = RunOptions.from_dict(yaml.safe_load(test_sampler_config_yaml))
assert run_options.environment_parameters is not None
assert "param_1" in run_options.environment_parameters
lessons = run_options.environment_parameters["param_1"].curriculum
assert len(lessons) == 1
assert lessons[0].completion_criteria is None
assert isinstance(lessons[0].value, UniformSettings)
assert lessons[0].value.min_value == 0.5
assert lessons[0].value.max_value == 10
test_sampler_and_constant_config_yaml = """
environment_parameters:
param_1:
sampler_type: gaussian
sampler_parameters:
mean: 4
st_dev: 5
param_2: 20
"""
def test_sampler_and_constant_conversion():
run_options = RunOptions.from_dict(
yaml.safe_load(test_sampler_and_constant_config_yaml)
)
assert "param_1" in run_options.environment_parameters
assert "param_2" in run_options.environment_parameters
lessons_1 = run_options.environment_parameters["param_1"].curriculum
lessons_2 = run_options.environment_parameters["param_2"].curriculum
# gaussian
assert isinstance(lessons_1[0].value, GaussianSettings)
assert lessons_1[0].value.mean == 4
assert lessons_1[0].value.st_dev == 5
# constant
assert isinstance(lessons_2[0].value, ConstantSettings)
assert lessons_2[0].value.value == 20
test_curriculum_config_yaml = """
environment_parameters:
param_1:
curriculum:
- name: Lesson1
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 30
min_lesson_length: 100
require_reset: true
value: 1
- name: Lesson2
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 60
min_lesson_length: 100
require_reset: false
value: 2
- name: Lesson3
value:
sampler_type: uniform
sampler_parameters:
min_value: 1
max_value: 3
"""
def test_curriculum_conversion():
run_options = RunOptions.from_dict(yaml.safe_load(test_curriculum_config_yaml))
assert "param_1" in run_options.environment_parameters
lessons = run_options.environment_parameters["param_1"].curriculum
assert len(lessons) == 3
# First lesson
lesson = lessons[0]
assert lesson.completion_criteria is not None
assert (
lesson.completion_criteria.measure
== CompletionCriteriaSettings.MeasureType.REWARD
)
assert lesson.completion_criteria.behavior == "fake_behavior"
assert lesson.completion_criteria.threshold == 30.0
assert lesson.completion_criteria.min_lesson_length == 100
assert lesson.completion_criteria.require_reset
assert isinstance(lesson.value, ConstantSettings)
assert lesson.value.value == 1
# Second lesson
lesson = lessons[1]
assert lesson.completion_criteria is not None
assert (
lesson.completion_criteria.measure
== CompletionCriteriaSettings.MeasureType.REWARD
)
assert lesson.completion_criteria.behavior == "fake_behavior"
assert lesson.completion_criteria.threshold == 60.0
assert lesson.completion_criteria.min_lesson_length == 100
assert not lesson.completion_criteria.require_reset
assert isinstance(lesson.value, ConstantSettings)
assert lesson.value.value == 2
# Last lesson
lesson = lessons[2]
assert lesson.completion_criteria is None
assert isinstance(lesson.value, UniformSettings)
assert lesson.value.min_value == 1
assert lesson.value.max_value == 3
test_bad_curriculum_no_competion_criteria_config_yaml = """
environment_parameters:
param_1:
curriculum:
- name: Lesson1
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 30
min_lesson_length: 100
require_reset: true
value: 1
- name: Lesson2
value: 2
- name: Lesson3
value:
sampler_type: uniform
sampler_parameters:
min_value: 1
max_value: 3
"""
test_bad_curriculum_all_competion_criteria_config_yaml = """
environment_parameters:
param_1:
curriculum:
- name: Lesson1
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 30
min_lesson_length: 100
require_reset: true
value: 1
- name: Lesson2
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 30
min_lesson_length: 100
require_reset: true
value: 2
- name: Lesson3
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 30
min_lesson_length: 100
require_reset: true
value:
sampler_type: uniform
sampler_parameters:
min_value: 1
max_value: 3
"""
def test_curriculum_raises_no_completion_criteria_conversion():
with pytest.raises(TrainerConfigError):
RunOptions.from_dict(
yaml.safe_load(test_bad_curriculum_no_competion_criteria_config_yaml)
)
def test_curriculum_raises_all_completion_criteria_conversion():
with pytest.warns(TrainerConfigWarning):
run_options = RunOptions.from_dict(
yaml.safe_load(test_bad_curriculum_all_competion_criteria_config_yaml)
)
param_manager = EnvironmentParameterManager(
run_options.environment_parameters, 1337, False
)
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 500},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [1000] * 101},
) == (True, True)
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 500},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [1000] * 101},
) == (True, True)
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 500},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [1000] * 101},
) == (False, False)
assert param_manager.get_current_lesson_number() == {"param_1": 2}
test_everything_config_yaml = """
environment_parameters:
param_1:
curriculum:
- name: Lesson1
completion_criteria:
measure: reward
behavior: fake_behavior
threshold: 30
min_lesson_length: 100
require_reset: true
value: 1
- name: Lesson2
completion_criteria:
measure: progress
behavior: fake_behavior
threshold: 0.5
min_lesson_length: 100
require_reset: false
value: 2
- name: Lesson3
value:
sampler_type: uniform
sampler_parameters:
min_value: 1
max_value: 3
param_2:
sampler_type: gaussian
sampler_parameters:
mean: 4
st_dev: 5
param_3: 20
"""
def test_create_manager():
run_options = RunOptions.from_dict(yaml.safe_load(test_everything_config_yaml))
param_manager = EnvironmentParameterManager(
run_options.environment_parameters, 1337, False
)
assert param_manager.get_minimum_reward_buffer_size("fake_behavior") == 100
assert param_manager.get_current_lesson_number() == {
"param_1": 0,
"param_2": 0,
"param_3": 0,
}
assert param_manager.get_current_samplers() == {
"param_1": ConstantSettings(seed=1337, value=1),
"param_2": GaussianSettings(seed=1337 + 3, mean=4, st_dev=5),
"param_3": ConstantSettings(seed=1337 + 3 + 1, value=20),
}
# Not enough episodes completed
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 500},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [1000] * 99},
) == (False, False)
# Not enough episodes reward
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 500},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [1] * 101},
) == (False, False)
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 500},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [1000] * 101},
) == (True, True)
assert param_manager.get_current_lesson_number() == {
"param_1": 1,
"param_2": 0,
"param_3": 0,
}
param_manager_2 = EnvironmentParameterManager(
run_options.environment_parameters, 1337, restore=True
)
# The use of global status should make it so that the lesson numbers are maintained
assert param_manager_2.get_current_lesson_number() == {
"param_1": 1,
"param_2": 0,
"param_3": 0,
}
# No reset required
assert param_manager.update_lessons(
trainer_steps={"fake_behavior": 700},
trainer_max_steps={"fake_behavior": 1000},
trainer_reward_buffer={"fake_behavior": [0] * 101},
) == (True, False)
assert param_manager.get_current_samplers() == {
"param_1": UniformSettings(seed=1337 + 2, min_value=1, max_value=3),
"param_2": GaussianSettings(seed=1337 + 3, mean=4, st_dev=5),
"param_3": ConstantSettings(seed=1337 + 3 + 1, value=20),
}
test_curriculum_no_behavior_yaml = """
environment_parameters:
param_1:
curriculum:
- name: Lesson1
completion_criteria:
measure: reward
threshold: 30
min_lesson_length: 100
require_reset: true
value: 1
- name: Lesson2
value: 2
"""
def test_curriculum_no_behavior():
with pytest.raises(TypeError):
run_options = RunOptions.from_dict(
yaml.safe_load(test_curriculum_no_behavior_yaml)
)
EnvironmentParameterManager(run_options.environment_parameters, 1337, False)
|