File size: 9,105 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from unittest import mock
import os
import pytest
import tempfile
import unittest
import time
from mlagents.trainers.stats import (
StatsReporter,
TensorboardWriter,
StatsSummary,
GaugeWriter,
ConsoleWriter,
StatsPropertyType,
StatsAggregationMethod,
)
from mlagents.trainers.env_manager import AgentManager
def test_stat_reporter_add_summary_write():
# Test add_writer
StatsReporter.writers.clear()
mock_writer1 = mock.Mock()
mock_writer2 = mock.Mock()
StatsReporter.add_writer(mock_writer1)
StatsReporter.add_writer(mock_writer2)
assert len(StatsReporter.writers) == 2
# Test add_stats and summaries
statsreporter1 = StatsReporter("category1")
statsreporter2 = StatsReporter("category2")
for i in range(10):
statsreporter1.add_stat("key1", float(i))
statsreporter2.add_stat("key2", float(i))
statsreportercalls = [
mock.call(f"category{j}", f"key{j}", float(i), StatsAggregationMethod.AVERAGE)
for i in range(10)
for j in [1, 2]
]
mock_writer1.on_add_stat.assert_has_calls(statsreportercalls)
mock_writer2.on_add_stat.assert_has_calls(statsreportercalls)
statssummary1 = statsreporter1.get_stats_summaries("key1")
statssummary2 = statsreporter2.get_stats_summaries("key2")
assert statssummary1.num == 10
assert statssummary2.num == 10
assert statssummary1.mean == 4.5
assert statssummary2.mean == 4.5
assert statssummary1.std == pytest.approx(2.9, abs=0.1)
assert statssummary2.std == pytest.approx(2.9, abs=0.1)
# Test write_stats
step = 10
statsreporter1.write_stats(step)
mock_writer1.write_stats.assert_called_once_with(
"category1", {"key1": statssummary1}, step
)
mock_writer2.write_stats.assert_called_once_with(
"category1", {"key1": statssummary1}, step
)
def test_stat_reporter_property():
# Test add_writer
mock_writer = mock.Mock()
StatsReporter.writers.clear()
StatsReporter.add_writer(mock_writer)
assert len(StatsReporter.writers) == 1
statsreporter1 = StatsReporter("category1")
# Test add_property
statsreporter1.add_property("key", "this is a text")
mock_writer.add_property.assert_called_once_with(
"category1", "key", "this is a text"
)
@mock.patch("mlagents.trainers.stats.SummaryWriter")
def test_tensorboard_writer(mock_summary):
# Test write_stats
category = "category1"
with tempfile.TemporaryDirectory(prefix="unittest-") as base_dir:
tb_writer = TensorboardWriter(base_dir, clear_past_data=False)
statssummary1 = StatsSummary(
full_dist=[1.0], aggregation_method=StatsAggregationMethod.AVERAGE
)
tb_writer.write_stats("category1", {"key1": statssummary1}, 10)
# Test that the filewriter has been created and the directory has been created.
filewriter_dir = "{basedir}/{category}".format(
basedir=base_dir, category=category
)
assert os.path.exists(filewriter_dir)
mock_summary.assert_called_once_with(filewriter_dir)
# Test that the filewriter was written to and the summary was added.
mock_summary.return_value.add_scalar.assert_called_once_with("key1", 1.0, 10)
mock_summary.return_value.flush.assert_called_once()
# Test hyperparameter writing - no good way to parse the TB string though.
tb_writer.add_property(
"category1", StatsPropertyType.HYPERPARAMETERS, {"example": 1.0}
)
assert mock_summary.return_value.add_text.call_count >= 1
@pytest.mark.parametrize("aggregation_type", list(StatsAggregationMethod))
def test_agent_manager_stats_report(aggregation_type):
stats_reporter = StatsReporter("recorder_name")
manager = AgentManager(None, "behaviorName", stats_reporter)
values = range(5)
env_stats = {"stat": [(i, aggregation_type) for i in values]}
manager.record_environment_stats(env_stats, 0)
summary = stats_reporter.get_stats_summaries("stat")
aggregation_result = {
StatsAggregationMethod.AVERAGE: sum(values) / len(values),
StatsAggregationMethod.MOST_RECENT: values[-1],
StatsAggregationMethod.SUM: sum(values),
StatsAggregationMethod.HISTOGRAM: sum(values) / len(values),
}
assert summary.aggregated_value == aggregation_result[aggregation_type]
stats_reporter.write_stats(0)
def test_tensorboard_writer_clear(tmp_path):
tb_writer = TensorboardWriter(tmp_path, clear_past_data=False)
statssummary1 = StatsSummary(
full_dist=[1.0], aggregation_method=StatsAggregationMethod.AVERAGE
)
tb_writer.write_stats("category1", {"key1": statssummary1}, 10)
# TB has some sort of timeout before making a new file
time.sleep(1.0)
assert len(os.listdir(os.path.join(tmp_path, "category1"))) > 0
# See if creating a new one doesn't delete it
tb_writer = TensorboardWriter(tmp_path, clear_past_data=False)
tb_writer.write_stats("category1", {"key1": statssummary1}, 10)
assert len(os.listdir(os.path.join(tmp_path, "category1"))) > 1
time.sleep(1.0)
# See if creating a new one deletes old ones
tb_writer = TensorboardWriter(tmp_path, clear_past_data=True)
tb_writer.write_stats("category1", {"key1": statssummary1}, 10)
assert len(os.listdir(os.path.join(tmp_path, "category1"))) == 1
@mock.patch("mlagents.trainers.stats.SummaryWriter")
def test_tensorboard_writer_hidden_keys(mock_summary):
# Test write_stats
category = "category1"
with tempfile.TemporaryDirectory(prefix="unittest-") as base_dir:
tb_writer = TensorboardWriter(
base_dir, clear_past_data=False, hidden_keys="hiddenKey"
)
statssummary1 = StatsSummary(
full_dist=[1.0], aggregation_method=StatsAggregationMethod.AVERAGE
)
tb_writer.write_stats("category1", {"hiddenKey": statssummary1}, 10)
# Test that the filewriter has been created and the directory has been created.
filewriter_dir = "{basedir}/{category}".format(
basedir=base_dir, category=category
)
assert os.path.exists(filewriter_dir)
mock_summary.assert_called_once_with(filewriter_dir)
# Test that the filewriter was not written to since we used the hidden key.
mock_summary.return_value.add_scalar.assert_not_called()
mock_summary.return_value.flush.assert_not_called()
def test_gauge_stat_writer_sanitize():
assert GaugeWriter.sanitize_string("Policy/Learning Rate") == "Policy.LearningRate"
assert (
GaugeWriter.sanitize_string("Very/Very/Very Nested Stat")
== "Very.Very.VeryNestedStat"
)
class ConsoleWriterTest(unittest.TestCase):
def test_console_writer(self):
# Test write_stats
with self.assertLogs("mlagents.trainers", level="INFO") as cm:
category = "category1"
console_writer = ConsoleWriter()
statssummary1 = StatsSummary(
full_dist=[1.0], aggregation_method=StatsAggregationMethod.AVERAGE
)
console_writer.write_stats(
category,
{
"Environment/Cumulative Reward": statssummary1,
"Is Training": statssummary1,
},
10,
)
statssummary2 = StatsSummary(
full_dist=[0.0], aggregation_method=StatsAggregationMethod.AVERAGE
)
console_writer.write_stats(
category,
{
"Environment/Cumulative Reward": statssummary2,
"Is Training": statssummary2,
},
10,
)
# Test hyperparameter writing
console_writer.add_property(
"category1", StatsPropertyType.HYPERPARAMETERS, {"example": 1.0}
)
self.assertIn(
"Mean Reward: 1.000. Std of Reward: 0.000. Training.", cm.output[0]
)
self.assertIn("Not Training.", cm.output[1])
self.assertIn("Hyperparameters for behavior name", cm.output[2])
self.assertIn("example:\t1.0", cm.output[2])
def test_selfplay_console_writer(self):
with self.assertLogs("mlagents.trainers", level="INFO") as cm:
category = "category1"
console_writer = ConsoleWriter()
console_writer.add_property(category, StatsPropertyType.SELF_PLAY, True)
statssummary1 = StatsSummary(
full_dist=[1.0], aggregation_method=StatsAggregationMethod.AVERAGE
)
console_writer.write_stats(
category,
{
"Environment/Cumulative Reward": statssummary1,
"Is Training": statssummary1,
"Self-play/ELO": statssummary1,
},
10,
)
self.assertIn(
"Mean Reward: 1.000. Std of Reward: 0.000. Training.", cm.output[0]
)
|