|
import pytest |
|
|
|
from mlagents_envs.registry import default_registry |
|
from mlagents_envs.side_channel.engine_configuration_channel import ( |
|
EngineConfigurationChannel, |
|
) |
|
from mlagents_envs.base_env import ActionTuple |
|
import numpy as np |
|
|
|
BALL_ID = "3DBall" |
|
|
|
|
|
@pytest.mark.parametrize("n_ports", [1]) |
|
def test_set_action_single_agent(base_port: int) -> None: |
|
engine_config_channel = EngineConfigurationChannel() |
|
env = default_registry[BALL_ID].make( |
|
base_port=base_port, |
|
worker_id=0, |
|
no_graphics=True, |
|
side_channels=[engine_config_channel], |
|
) |
|
engine_config_channel.set_configuration_parameters(time_scale=100) |
|
for _ in range(3): |
|
env.reset() |
|
behavior_name = list(env.behavior_specs.keys())[0] |
|
d, t = env.get_steps(behavior_name) |
|
for _ in range(50): |
|
for agent_id in d.agent_id: |
|
action = np.ones((1, 2)) |
|
action_tuple = ActionTuple() |
|
action_tuple.add_continuous(action) |
|
env.set_action_for_agent(behavior_name, agent_id, action_tuple) |
|
env.step() |
|
d, t = env.get_steps(behavior_name) |
|
env.close() |
|
|
|
|
|
@pytest.mark.parametrize("n_ports", [1]) |
|
def test_set_action_multi_agent(base_port: int) -> None: |
|
engine_config_channel = EngineConfigurationChannel() |
|
env = default_registry[BALL_ID].make( |
|
base_port=base_port, |
|
worker_id=0, |
|
no_graphics=True, |
|
side_channels=[engine_config_channel], |
|
) |
|
engine_config_channel.set_configuration_parameters(time_scale=100) |
|
for _ in range(3): |
|
env.reset() |
|
behavior_name = list(env.behavior_specs.keys())[0] |
|
d, t = env.get_steps(behavior_name) |
|
for _ in range(50): |
|
action = np.ones((len(d), 2)) |
|
action_tuple = ActionTuple() |
|
action_tuple.add_continuous(action) |
|
env.set_actions(behavior_name, action_tuple) |
|
env.step() |
|
d, t = env.get_steps(behavior_name) |
|
env.close() |
|
|