|
import atexit |
|
from distutils.version import StrictVersion |
|
|
|
import numpy as np |
|
import os |
|
import subprocess |
|
from typing import Dict, List, Optional, Tuple, Mapping as MappingType |
|
|
|
import mlagents_envs |
|
|
|
from mlagents_envs.logging_util import get_logger |
|
from mlagents_envs.side_channel.side_channel import SideChannel |
|
from mlagents_envs.side_channel import DefaultTrainingAnalyticsSideChannel |
|
from mlagents_envs.side_channel.side_channel_manager import SideChannelManager |
|
from mlagents_envs import env_utils |
|
|
|
from mlagents_envs.base_env import ( |
|
BaseEnv, |
|
DecisionSteps, |
|
TerminalSteps, |
|
BehaviorSpec, |
|
ActionTuple, |
|
BehaviorName, |
|
AgentId, |
|
BehaviorMapping, |
|
) |
|
from mlagents_envs.timers import timed, hierarchical_timer |
|
from mlagents_envs.exception import ( |
|
UnityEnvironmentException, |
|
UnityActionException, |
|
UnityTimeOutException, |
|
UnityCommunicatorStoppedException, |
|
) |
|
|
|
from mlagents_envs.communicator_objects.command_pb2 import STEP, RESET |
|
from mlagents_envs.rpc_utils import behavior_spec_from_proto, steps_from_proto |
|
|
|
from mlagents_envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto |
|
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto |
|
from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto |
|
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto |
|
from mlagents_envs.communicator_objects.capabilities_pb2 import UnityRLCapabilitiesProto |
|
from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import ( |
|
UnityRLInitializationInputProto, |
|
) |
|
|
|
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto |
|
|
|
from .rpc_communicator import RpcCommunicator |
|
import signal |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class UnityEnvironment(BaseEnv): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
API_VERSION = "1.5.0" |
|
|
|
|
|
|
|
DEFAULT_EDITOR_PORT = 5004 |
|
|
|
|
|
|
|
BASE_ENVIRONMENT_PORT = 5005 |
|
|
|
|
|
_PORT_COMMAND_LINE_ARG = "--mlagents-port" |
|
|
|
@staticmethod |
|
def _raise_version_exception(unity_com_ver: str) -> None: |
|
raise UnityEnvironmentException( |
|
f"The communication API version is not compatible between Unity and python. " |
|
f"Python API: {UnityEnvironment.API_VERSION}, Unity API: {unity_com_ver}.\n " |
|
f"Please find the versions that work best together from our release page.\n" |
|
"https://github.com/Unity-Technologies/ml-agents/releases" |
|
) |
|
|
|
@staticmethod |
|
def _check_communication_compatibility( |
|
unity_com_ver: str, python_api_version: str, unity_package_version: str |
|
) -> bool: |
|
unity_communicator_version = StrictVersion(unity_com_ver) |
|
api_version = StrictVersion(python_api_version) |
|
if unity_communicator_version.version[0] == 0: |
|
if ( |
|
unity_communicator_version.version[0] != api_version.version[0] |
|
or unity_communicator_version.version[1] != api_version.version[1] |
|
): |
|
|
|
return False |
|
elif unity_communicator_version.version[0] != api_version.version[0]: |
|
|
|
return False |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info( |
|
f"Connected to Unity environment with package version {unity_package_version} " |
|
f"and communication version {unity_com_ver}" |
|
) |
|
return True |
|
|
|
@staticmethod |
|
def _get_capabilities_proto() -> UnityRLCapabilitiesProto: |
|
capabilities = UnityRLCapabilitiesProto() |
|
capabilities.baseRLCapabilities = True |
|
capabilities.concatenatedPngObservations = True |
|
capabilities.compressedChannelMapping = True |
|
capabilities.hybridActions = True |
|
capabilities.trainingAnalytics = True |
|
capabilities.variableLengthObservation = True |
|
capabilities.multiAgentGroups = True |
|
return capabilities |
|
|
|
@staticmethod |
|
def _warn_csharp_base_capabilities( |
|
caps: UnityRLCapabilitiesProto, unity_package_ver: str, python_package_ver: str |
|
) -> None: |
|
if not caps.baseRLCapabilities: |
|
logger.warning( |
|
"WARNING: The Unity process is not running with the expected base Reinforcement Learning" |
|
" capabilities. Please be sure upgrade the Unity Package to a version that is compatible with this " |
|
"python package.\n" |
|
f"Python package version: {python_package_ver}, C# package version: {unity_package_ver}" |
|
f"Please find the versions that work best together from our release page.\n" |
|
"https://github.com/Unity-Technologies/ml-agents/releases" |
|
) |
|
|
|
def __init__( |
|
self, |
|
file_name: Optional[str] = None, |
|
worker_id: int = 0, |
|
base_port: Optional[int] = None, |
|
seed: int = 0, |
|
no_graphics: bool = False, |
|
timeout_wait: int = 60, |
|
additional_args: Optional[List[str]] = None, |
|
side_channels: Optional[List[SideChannel]] = None, |
|
log_folder: Optional[str] = None, |
|
num_areas: int = 1, |
|
): |
|
""" |
|
Starts a new unity environment and establishes a connection with the environment. |
|
Notice: Currently communication between Unity and Python takes place over an open socket without authentication. |
|
Ensure that the network where training takes place is secure. |
|
|
|
:string file_name: Name of Unity environment binary. |
|
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this. |
|
If no environment is specified (i.e. file_name is None), the DEFAULT_EDITOR_PORT will be used. |
|
:int worker_id: Offset from base_port. Used for training multiple environments simultaneously. |
|
:bool no_graphics: Whether to run the Unity simulator in no-graphics mode |
|
:int timeout_wait: Time (in seconds) to wait for connection from environment. |
|
:list args: Addition Unity command line arguments |
|
:list side_channels: Additional side channel for no-rl communication with Unity |
|
:str log_folder: Optional folder to write the Unity Player log file into. Requires absolute path. |
|
""" |
|
atexit.register(self._close) |
|
self._additional_args = additional_args or [] |
|
self._no_graphics = no_graphics |
|
|
|
|
|
if base_port is None: |
|
base_port = ( |
|
self.BASE_ENVIRONMENT_PORT if file_name else self.DEFAULT_EDITOR_PORT |
|
) |
|
self._port = base_port + worker_id |
|
self._buffer_size = 12000 |
|
|
|
self._loaded = False |
|
|
|
self._process: Optional[subprocess.Popen] = None |
|
self._timeout_wait: int = timeout_wait |
|
self._communicator = self._get_communicator(worker_id, base_port, timeout_wait) |
|
self._worker_id = worker_id |
|
if side_channels is None: |
|
side_channels = [] |
|
default_training_side_channel: Optional[ |
|
DefaultTrainingAnalyticsSideChannel |
|
] = None |
|
if DefaultTrainingAnalyticsSideChannel.CHANNEL_ID not in [ |
|
_.channel_id for _ in side_channels |
|
]: |
|
default_training_side_channel = DefaultTrainingAnalyticsSideChannel() |
|
side_channels.append(default_training_side_channel) |
|
self._side_channel_manager = SideChannelManager(side_channels) |
|
self._log_folder = log_folder |
|
self.academy_capabilities: UnityRLCapabilitiesProto = None |
|
|
|
|
|
|
|
|
|
if file_name is None and worker_id != 0: |
|
raise UnityEnvironmentException( |
|
"If the environment name is None, " |
|
"the worker-id must be 0 in order to connect with the Editor." |
|
) |
|
if file_name is not None: |
|
try: |
|
self._process = env_utils.launch_executable( |
|
file_name, self._executable_args() |
|
) |
|
except UnityEnvironmentException: |
|
self._close(0) |
|
raise |
|
else: |
|
logger.info( |
|
f"Listening on port {self._port}. " |
|
f"Start training by pressing the Play button in the Unity Editor." |
|
) |
|
self._loaded = True |
|
|
|
rl_init_parameters_in = UnityRLInitializationInputProto( |
|
seed=seed, |
|
communication_version=self.API_VERSION, |
|
package_version=mlagents_envs.__version__, |
|
capabilities=UnityEnvironment._get_capabilities_proto(), |
|
num_areas=num_areas, |
|
) |
|
try: |
|
aca_output = self._send_academy_parameters(rl_init_parameters_in) |
|
aca_params = aca_output.rl_initialization_output |
|
except UnityTimeOutException: |
|
self._close(0) |
|
raise |
|
|
|
if not UnityEnvironment._check_communication_compatibility( |
|
aca_params.communication_version, |
|
UnityEnvironment.API_VERSION, |
|
aca_params.package_version, |
|
): |
|
self._close(0) |
|
UnityEnvironment._raise_version_exception(aca_params.communication_version) |
|
|
|
UnityEnvironment._warn_csharp_base_capabilities( |
|
aca_params.capabilities, |
|
aca_params.package_version, |
|
UnityEnvironment.API_VERSION, |
|
) |
|
|
|
self._env_state: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {} |
|
self._env_specs: Dict[str, BehaviorSpec] = {} |
|
self._env_actions: Dict[str, ActionTuple] = {} |
|
self._is_first_message = True |
|
self._update_behavior_specs(aca_output) |
|
self.academy_capabilities = aca_params.capabilities |
|
if default_training_side_channel is not None: |
|
default_training_side_channel.environment_initialized() |
|
|
|
@staticmethod |
|
def _get_communicator(worker_id, base_port, timeout_wait): |
|
return RpcCommunicator(worker_id, base_port, timeout_wait) |
|
|
|
def _executable_args(self) -> List[str]: |
|
args: List[str] = [] |
|
if self._no_graphics: |
|
args += ["-nographics", "-batchmode"] |
|
args += [UnityEnvironment._PORT_COMMAND_LINE_ARG, str(self._port)] |
|
|
|
|
|
|
|
logfile_set = "-logfile" in (arg.lower() for arg in self._additional_args) |
|
if self._log_folder and not logfile_set: |
|
log_file_path = os.path.join( |
|
self._log_folder, f"Player-{self._worker_id}.log" |
|
) |
|
args += ["-logFile", log_file_path] |
|
|
|
args += self._additional_args |
|
return args |
|
|
|
def _update_behavior_specs(self, output: UnityOutputProto) -> None: |
|
init_output = output.rl_initialization_output |
|
for brain_param in init_output.brain_parameters: |
|
|
|
|
|
agent_infos = output.rl_output.agentInfos[brain_param.brain_name] |
|
if agent_infos.value: |
|
agent = agent_infos.value[0] |
|
new_spec = behavior_spec_from_proto(brain_param, agent) |
|
self._env_specs[brain_param.brain_name] = new_spec |
|
logger.info(f"Connected new brain: {brain_param.brain_name}") |
|
|
|
def _update_state(self, output: UnityRLOutputProto) -> None: |
|
""" |
|
Collects experience information from all external brains in environment at current step. |
|
""" |
|
for brain_name in self._env_specs.keys(): |
|
if brain_name in output.agentInfos: |
|
agent_info_list = output.agentInfos[brain_name].value |
|
self._env_state[brain_name] = steps_from_proto( |
|
agent_info_list, self._env_specs[brain_name] |
|
) |
|
else: |
|
self._env_state[brain_name] = ( |
|
DecisionSteps.empty(self._env_specs[brain_name]), |
|
TerminalSteps.empty(self._env_specs[brain_name]), |
|
) |
|
self._side_channel_manager.process_side_channel_message(output.side_channel) |
|
|
|
def reset(self) -> None: |
|
if self._loaded: |
|
outputs = self._communicator.exchange( |
|
self._generate_reset_input(), self._poll_process |
|
) |
|
if outputs is None: |
|
raise UnityCommunicatorStoppedException("Communicator has exited.") |
|
self._update_behavior_specs(outputs) |
|
rl_output = outputs.rl_output |
|
self._update_state(rl_output) |
|
self._is_first_message = False |
|
self._env_actions.clear() |
|
else: |
|
raise UnityEnvironmentException("No Unity environment is loaded.") |
|
|
|
@timed |
|
def step(self) -> None: |
|
if self._is_first_message: |
|
return self.reset() |
|
if not self._loaded: |
|
raise UnityEnvironmentException("No Unity environment is loaded.") |
|
|
|
for group_name in self._env_specs: |
|
if group_name not in self._env_actions: |
|
n_agents = 0 |
|
if group_name in self._env_state: |
|
n_agents = len(self._env_state[group_name][0]) |
|
self._env_actions[group_name] = self._env_specs[ |
|
group_name |
|
].action_spec.empty_action(n_agents) |
|
step_input = self._generate_step_input(self._env_actions) |
|
with hierarchical_timer("communicator.exchange"): |
|
outputs = self._communicator.exchange(step_input, self._poll_process) |
|
if outputs is None: |
|
raise UnityCommunicatorStoppedException("Communicator has exited.") |
|
self._update_behavior_specs(outputs) |
|
rl_output = outputs.rl_output |
|
self._update_state(rl_output) |
|
self._env_actions.clear() |
|
|
|
@property |
|
def behavior_specs(self) -> MappingType[str, BehaviorSpec]: |
|
return BehaviorMapping(self._env_specs) |
|
|
|
def _assert_behavior_exists(self, behavior_name: str) -> None: |
|
if behavior_name not in self._env_specs: |
|
raise UnityActionException( |
|
f"The group {behavior_name} does not correspond to an existing " |
|
f"agent group in the environment" |
|
) |
|
|
|
def set_actions(self, behavior_name: BehaviorName, action: ActionTuple) -> None: |
|
self._assert_behavior_exists(behavior_name) |
|
if behavior_name not in self._env_state: |
|
return |
|
action_spec = self._env_specs[behavior_name].action_spec |
|
num_agents = len(self._env_state[behavior_name][0]) |
|
action = action_spec._validate_action(action, num_agents, behavior_name) |
|
self._env_actions[behavior_name] = action |
|
|
|
def set_action_for_agent( |
|
self, behavior_name: BehaviorName, agent_id: AgentId, action: ActionTuple |
|
) -> None: |
|
self._assert_behavior_exists(behavior_name) |
|
if behavior_name not in self._env_state: |
|
return |
|
action_spec = self._env_specs[behavior_name].action_spec |
|
action = action_spec._validate_action(action, 1, behavior_name) |
|
if behavior_name not in self._env_actions: |
|
num_agents = len(self._env_state[behavior_name][0]) |
|
self._env_actions[behavior_name] = action_spec.empty_action(num_agents) |
|
try: |
|
index = np.where(self._env_state[behavior_name][0].agent_id == agent_id)[0][ |
|
0 |
|
] |
|
except IndexError as ie: |
|
raise IndexError( |
|
"agent_id {} is did not request a decision at the previous step".format( |
|
agent_id |
|
) |
|
) from ie |
|
if action_spec.continuous_size > 0: |
|
self._env_actions[behavior_name].continuous[index] = action.continuous[0, :] |
|
if action_spec.discrete_size > 0: |
|
self._env_actions[behavior_name].discrete[index] = action.discrete[0, :] |
|
|
|
def get_steps( |
|
self, behavior_name: BehaviorName |
|
) -> Tuple[DecisionSteps, TerminalSteps]: |
|
self._assert_behavior_exists(behavior_name) |
|
return self._env_state[behavior_name] |
|
|
|
def _poll_process(self) -> None: |
|
""" |
|
Check the status of the subprocess. If it has exited, raise a UnityEnvironmentException |
|
:return: None |
|
""" |
|
if not self._process: |
|
return |
|
poll_res = self._process.poll() |
|
if poll_res is not None: |
|
exc_msg = self._returncode_to_env_message(self._process.returncode) |
|
raise UnityEnvironmentException(exc_msg) |
|
|
|
def close(self): |
|
""" |
|
Sends a shutdown signal to the unity environment, and closes the socket connection. |
|
""" |
|
if self._loaded: |
|
self._close() |
|
else: |
|
raise UnityEnvironmentException("No Unity environment is loaded.") |
|
|
|
def _close(self, timeout: Optional[int] = None) -> None: |
|
""" |
|
Close the communicator and environment subprocess (if necessary). |
|
|
|
:int timeout: [Optional] Number of seconds to wait for the environment to shut down before |
|
force-killing it. Defaults to `self.timeout_wait`. |
|
""" |
|
if timeout is None: |
|
timeout = self._timeout_wait |
|
self._loaded = False |
|
self._communicator.close() |
|
if self._process is not None: |
|
|
|
try: |
|
self._process.wait(timeout=timeout) |
|
logger.debug(self._returncode_to_env_message(self._process.returncode)) |
|
except subprocess.TimeoutExpired: |
|
logger.warning("Environment timed out shutting down. Killing...") |
|
self._process.kill() |
|
|
|
self._process = None |
|
|
|
@timed |
|
def _generate_step_input( |
|
self, vector_action: Dict[str, ActionTuple] |
|
) -> UnityInputProto: |
|
rl_in = UnityRLInputProto() |
|
for b in vector_action: |
|
n_agents = len(self._env_state[b][0]) |
|
if n_agents == 0: |
|
continue |
|
for i in range(n_agents): |
|
action = AgentActionProto() |
|
if vector_action[b].continuous is not None: |
|
action.vector_actions_deprecated.extend( |
|
vector_action[b].continuous[i] |
|
) |
|
action.continuous_actions.extend(vector_action[b].continuous[i]) |
|
if vector_action[b].discrete is not None: |
|
action.vector_actions_deprecated.extend( |
|
vector_action[b].discrete[i] |
|
) |
|
action.discrete_actions.extend(vector_action[b].discrete[i]) |
|
rl_in.agent_actions[b].value.extend([action]) |
|
rl_in.command = STEP |
|
rl_in.side_channel = bytes( |
|
self._side_channel_manager.generate_side_channel_messages() |
|
) |
|
return self._wrap_unity_input(rl_in) |
|
|
|
def _generate_reset_input(self) -> UnityInputProto: |
|
rl_in = UnityRLInputProto() |
|
rl_in.command = RESET |
|
rl_in.side_channel = bytes( |
|
self._side_channel_manager.generate_side_channel_messages() |
|
) |
|
return self._wrap_unity_input(rl_in) |
|
|
|
def _send_academy_parameters( |
|
self, init_parameters: UnityRLInitializationInputProto |
|
) -> UnityOutputProto: |
|
inputs = UnityInputProto() |
|
inputs.rl_initialization_input.CopyFrom(init_parameters) |
|
return self._communicator.initialize(inputs, self._poll_process) |
|
|
|
@staticmethod |
|
def _wrap_unity_input(rl_input: UnityRLInputProto) -> UnityInputProto: |
|
result = UnityInputProto() |
|
result.rl_input.CopyFrom(rl_input) |
|
return result |
|
|
|
@staticmethod |
|
def _returncode_to_signal_name(returncode: int) -> Optional[str]: |
|
""" |
|
Try to convert return codes into their corresponding signal name. |
|
E.g. returncode_to_signal_name(-2) -> "SIGINT" |
|
""" |
|
try: |
|
|
|
s = signal.Signals(-returncode) |
|
return s.name |
|
except Exception: |
|
|
|
return None |
|
|
|
@staticmethod |
|
def _returncode_to_env_message(returncode: int) -> str: |
|
signal_name = UnityEnvironment._returncode_to_signal_name(returncode) |
|
signal_name = f" ({signal_name})" if signal_name else "" |
|
return f"Environment shut down with return code {returncode}{signal_name}." |
|
|