|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from typing import cast, Dict, Union, Any, Type |
|
|
|
import numpy as np |
|
|
|
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod |
|
from mlagents_envs.logging_util import get_logger |
|
from mlagents_envs.base_env import BehaviorSpec |
|
from mlagents.trainers.buffer import BufferKey, RewardSignalUtil |
|
from mlagents.trainers.trainer.on_policy_trainer import OnPolicyTrainer |
|
from mlagents.trainers.trainer.trainer_utils import lambda_return |
|
from mlagents.trainers.policy import Policy |
|
from mlagents.trainers.policy.torch_policy import TorchPolicy |
|
from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer, POCASettings |
|
from mlagents.trainers.trajectory import Trajectory |
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers |
|
from mlagents.trainers.settings import TrainerSettings |
|
|
|
from mlagents.trainers.torch_entities.networks import SimpleActor, SharedActorCritic |
|
|
|
logger = get_logger(__name__) |
|
|
|
TRAINER_NAME = "poca" |
|
|
|
|
|
class POCATrainer(OnPolicyTrainer): |
|
"""The POCATrainer is an implementation of the MA-POCA algorithm.""" |
|
|
|
def __init__( |
|
self, |
|
behavior_name: str, |
|
reward_buff_cap: int, |
|
trainer_settings: TrainerSettings, |
|
training: bool, |
|
load: bool, |
|
seed: int, |
|
artifact_path: str, |
|
): |
|
""" |
|
Responsible for collecting experiences and training POCA model. |
|
:param behavior_name: The name of the behavior associated with trainer config |
|
:param reward_buff_cap: Max reward history to track in the reward buffer |
|
:param trainer_settings: The parameters for the trainer. |
|
:param training: Whether the trainer is set for training. |
|
:param load: Whether the model should be loaded. |
|
:param seed: The seed the model will be initialized with |
|
:param artifact_path: The directory within which to store artifacts from this trainer. |
|
""" |
|
super().__init__( |
|
behavior_name, |
|
reward_buff_cap, |
|
trainer_settings, |
|
training, |
|
load, |
|
seed, |
|
artifact_path, |
|
) |
|
self.hyperparameters: POCASettings = cast( |
|
POCASettings, self.trainer_settings.hyperparameters |
|
) |
|
self.seed = seed |
|
self.policy: TorchPolicy = None |
|
self.optimizer: TorchPOCAOptimizer = None |
|
self.collected_group_rewards: Dict[str, int] = defaultdict(lambda: 0) |
|
|
|
def _process_trajectory(self, trajectory: Trajectory) -> None: |
|
""" |
|
Takes a trajectory and processes it, putting it into the update buffer. |
|
Processing involves calculating value and advantage targets for model updating step. |
|
:param trajectory: The Trajectory tuple containing the steps to be processed. |
|
""" |
|
super()._process_trajectory(trajectory) |
|
agent_id = trajectory.agent_id |
|
|
|
agent_buffer_trajectory = trajectory.to_agentbuffer() |
|
|
|
if self.is_training: |
|
self.policy.actor.update_normalization(agent_buffer_trajectory) |
|
self.optimizer.critic.update_normalization(agent_buffer_trajectory) |
|
|
|
|
|
( |
|
value_estimates, |
|
baseline_estimates, |
|
value_next, |
|
value_memories, |
|
baseline_memories, |
|
) = self.optimizer.get_trajectory_and_baseline_value_estimates( |
|
agent_buffer_trajectory, |
|
trajectory.next_obs, |
|
trajectory.next_group_obs, |
|
trajectory.all_group_dones_reached |
|
and trajectory.done_reached |
|
and not trajectory.interrupted, |
|
) |
|
|
|
if value_memories is not None and baseline_memories is not None: |
|
agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) |
|
agent_buffer_trajectory[BufferKey.BASELINE_MEMORY].set(baseline_memories) |
|
|
|
for name, v in value_estimates.items(): |
|
agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend( |
|
v |
|
) |
|
agent_buffer_trajectory[ |
|
RewardSignalUtil.baseline_estimates_key(name) |
|
].extend(baseline_estimates[name]) |
|
self._stats_reporter.add_stat( |
|
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Baseline Estimate", |
|
np.mean(baseline_estimates[name]), |
|
) |
|
self._stats_reporter.add_stat( |
|
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate", |
|
np.mean(value_estimates[name]), |
|
) |
|
|
|
self.collected_rewards["environment"][agent_id] += np.sum( |
|
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] |
|
) |
|
self.collected_group_rewards[agent_id] += np.sum( |
|
agent_buffer_trajectory[BufferKey.GROUP_REWARD] |
|
) |
|
for name, reward_signal in self.optimizer.reward_signals.items(): |
|
evaluate_result = ( |
|
reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength |
|
) |
|
agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend( |
|
evaluate_result |
|
) |
|
|
|
self.collected_rewards[name][agent_id] += np.sum(evaluate_result) |
|
|
|
|
|
tmp_advantages = [] |
|
for name in self.optimizer.reward_signals: |
|
|
|
local_rewards = np.array( |
|
agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].get_batch(), |
|
dtype=np.float32, |
|
) |
|
|
|
baseline_estimate = agent_buffer_trajectory[ |
|
RewardSignalUtil.baseline_estimates_key(name) |
|
].get_batch() |
|
v_estimates = agent_buffer_trajectory[ |
|
RewardSignalUtil.value_estimates_key(name) |
|
].get_batch() |
|
|
|
lambd_returns = lambda_return( |
|
r=local_rewards, |
|
value_estimates=v_estimates, |
|
gamma=self.optimizer.reward_signals[name].gamma, |
|
lambd=self.hyperparameters.lambd, |
|
value_next=value_next[name], |
|
) |
|
|
|
local_advantage = np.array(lambd_returns) - np.array(baseline_estimate) |
|
|
|
agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set( |
|
lambd_returns |
|
) |
|
agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set( |
|
local_advantage |
|
) |
|
tmp_advantages.append(local_advantage) |
|
|
|
|
|
global_advantages = list( |
|
np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0) |
|
) |
|
agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages) |
|
|
|
self._append_to_update_buffer(agent_buffer_trajectory) |
|
|
|
|
|
if trajectory.done_reached: |
|
self._update_end_episode_stats(agent_id, self.optimizer) |
|
|
|
if not trajectory.all_group_dones_reached: |
|
self.collected_group_rewards.pop(agent_id) |
|
|
|
|
|
if trajectory.all_group_dones_reached and trajectory.done_reached: |
|
self.stats_reporter.add_stat( |
|
"Environment/Group Cumulative Reward", |
|
self.collected_group_rewards.get(agent_id, 0), |
|
aggregation=StatsAggregationMethod.HISTOGRAM, |
|
) |
|
self.collected_group_rewards.pop(agent_id) |
|
|
|
def _is_ready_update(self): |
|
""" |
|
Returns whether or not the trainer has enough elements to run update model |
|
:return: A boolean corresponding to whether or not update_model() can be run |
|
""" |
|
size_of_buffer = self.update_buffer.num_experiences |
|
return size_of_buffer > self.hyperparameters.buffer_size |
|
|
|
def end_episode(self) -> None: |
|
""" |
|
A signal that the Episode has ended. The buffer must be reset. |
|
Get only called when the academy resets. For POCA, we should |
|
also zero out the group rewards. |
|
""" |
|
super().end_episode() |
|
self.collected_group_rewards.clear() |
|
|
|
def create_policy( |
|
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec |
|
) -> TorchPolicy: |
|
""" |
|
Creates a policy with a PyTorch backend and POCA hyperparameters |
|
:param parsed_behavior_id: |
|
:param behavior_spec: specifications for policy construction |
|
:return policy |
|
""" |
|
actor_cls: Union[Type[SimpleActor], Type[SharedActorCritic]] = SimpleActor |
|
actor_kwargs: Dict[str, Any] = { |
|
"conditional_sigma": False, |
|
"tanh_squash": False, |
|
} |
|
|
|
policy = TorchPolicy( |
|
self.seed, |
|
behavior_spec, |
|
self.trainer_settings.network_settings, |
|
actor_cls, |
|
actor_kwargs, |
|
) |
|
return policy |
|
|
|
def create_optimizer(self) -> TorchPOCAOptimizer: |
|
return TorchPOCAOptimizer(self.policy, self.trainer_settings) |
|
|
|
def get_policy(self, name_behavior_id: str) -> Policy: |
|
""" |
|
Gets policy from trainer associated with name_behavior_id |
|
:param name_behavior_id: full identifier of policy |
|
""" |
|
|
|
return self.policy |
|
|
|
@staticmethod |
|
def get_trainer_name() -> str: |
|
return TRAINER_NAME |
|
|