|
|
|
|
|
|
|
|
|
from typing import cast |
|
|
|
import numpy as np |
|
|
|
from mlagents_envs.logging_util import get_logger |
|
from mlagents_envs.base_env import BehaviorSpec |
|
from mlagents.trainers.buffer import BufferKey |
|
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer |
|
from mlagents.trainers.trainer.off_policy_trainer import OffPolicyTrainer |
|
from mlagents.trainers.policy.torch_policy import TorchPolicy |
|
from mlagents.trainers.policy.policy import Policy |
|
from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer, SACSettings |
|
from mlagents.trainers.trajectory import Trajectory, ObsUtil |
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers |
|
from mlagents.trainers.settings import TrainerSettings |
|
|
|
from mlagents.trainers.torch_entities.networks import SimpleActor |
|
|
|
logger = get_logger(__name__) |
|
|
|
BUFFER_TRUNCATE_PERCENT = 0.8 |
|
|
|
TRAINER_NAME = "sac" |
|
|
|
|
|
class SACTrainer(OffPolicyTrainer): |
|
""" |
|
The SACTrainer is an implementation of the SAC algorithm, with support |
|
for discrete actions and recurrent networks. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
behavior_name: str, |
|
reward_buff_cap: int, |
|
trainer_settings: TrainerSettings, |
|
training: bool, |
|
load: bool, |
|
seed: int, |
|
artifact_path: str, |
|
): |
|
""" |
|
Responsible for collecting experiences and training SAC model. |
|
:param behavior_name: The name of the behavior associated with trainer config |
|
:param reward_buff_cap: Max reward history to track in the reward buffer |
|
:param trainer_settings: The parameters for the trainer. |
|
:param training: Whether the trainer is set for training. |
|
:param load: Whether the model should be loaded. |
|
:param seed: The seed the model will be initialized with |
|
:param artifact_path: The directory within which to store artifacts from this trainer. |
|
""" |
|
super().__init__( |
|
behavior_name, |
|
reward_buff_cap, |
|
trainer_settings, |
|
training, |
|
load, |
|
seed, |
|
artifact_path, |
|
) |
|
|
|
self.seed = seed |
|
self.policy: TorchPolicy = None |
|
self.optimizer: TorchSACOptimizer = None |
|
self.hyperparameters: SACSettings = cast( |
|
SACSettings, trainer_settings.hyperparameters |
|
) |
|
self._step = 0 |
|
|
|
|
|
self.update_steps = 1 |
|
self.reward_signal_update_steps = 1 |
|
|
|
self.steps_per_update = self.hyperparameters.steps_per_update |
|
self.reward_signal_steps_per_update = ( |
|
self.hyperparameters.reward_signal_steps_per_update |
|
) |
|
|
|
self.checkpoint_replay_buffer = self.hyperparameters.save_replay_buffer |
|
|
|
def _process_trajectory(self, trajectory: Trajectory) -> None: |
|
""" |
|
Takes a trajectory and processes it, putting it into the replay buffer. |
|
""" |
|
super()._process_trajectory(trajectory) |
|
last_step = trajectory.steps[-1] |
|
agent_id = trajectory.agent_id |
|
|
|
agent_buffer_trajectory = trajectory.to_agentbuffer() |
|
|
|
self._warn_if_group_reward(agent_buffer_trajectory) |
|
|
|
|
|
if self.is_training: |
|
self.policy.actor.update_normalization(agent_buffer_trajectory) |
|
self.optimizer.critic.update_normalization(agent_buffer_trajectory) |
|
|
|
|
|
self.collected_rewards["environment"][agent_id] += np.sum( |
|
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] |
|
) |
|
for name, reward_signal in self.optimizer.reward_signals.items(): |
|
evaluate_result = ( |
|
reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength |
|
) |
|
|
|
|
|
self.collected_rewards[name][agent_id] += np.sum(evaluate_result) |
|
|
|
|
|
( |
|
value_estimates, |
|
_, |
|
value_memories, |
|
) = self.optimizer.get_trajectory_value_estimates( |
|
agent_buffer_trajectory, trajectory.next_obs, trajectory.done_reached |
|
) |
|
if value_memories is not None: |
|
agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) |
|
|
|
for name, v in value_estimates.items(): |
|
self._stats_reporter.add_stat( |
|
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value", |
|
np.mean(v), |
|
) |
|
|
|
|
|
|
|
if last_step.interrupted: |
|
last_step_obs = last_step.obs |
|
for i, obs in enumerate(last_step_obs): |
|
agent_buffer_trajectory[ObsUtil.get_name_at_next(i)][-1] = obs |
|
agent_buffer_trajectory[BufferKey.DONE][-1] = False |
|
|
|
self._append_to_update_buffer(agent_buffer_trajectory) |
|
|
|
if trajectory.done_reached: |
|
self._update_end_episode_stats(agent_id, self.optimizer) |
|
|
|
def create_optimizer(self) -> TorchOptimizer: |
|
return TorchSACOptimizer( |
|
cast(TorchPolicy, self.policy), self.trainer_settings |
|
) |
|
|
|
def create_policy( |
|
self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec |
|
) -> TorchPolicy: |
|
""" |
|
Creates a policy with a PyTorch backend and SAC hyperparameters |
|
:param parsed_behavior_id: |
|
:param behavior_spec: specifications for policy construction |
|
:return policy |
|
""" |
|
actor_cls = SimpleActor |
|
actor_kwargs = {"conditional_sigma": True, "tanh_squash": True} |
|
|
|
policy = TorchPolicy( |
|
self.seed, |
|
behavior_spec, |
|
self.trainer_settings.network_settings, |
|
actor_cls, |
|
actor_kwargs, |
|
) |
|
self.maybe_load_replay_buffer() |
|
return policy |
|
|
|
def get_policy(self, name_behavior_id: str) -> Policy: |
|
""" |
|
Gets policy from trainer associated with name_behavior_id |
|
:param name_behavior_id: full identifier of policy |
|
""" |
|
|
|
return self.policy |
|
|
|
@staticmethod |
|
def get_trainer_name() -> str: |
|
return TRAINER_NAME |
|
|