--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: populism_model5 results: [] --- # populism_model5 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5689 - Accuracy: 0.9485 - F1: 0.4444 - Recall: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:| | No log | 1.0 | 25 | 0.3309 | 0.8866 | 0.3125 | 0.625 | | 0.3485 | 2.0 | 50 | 0.5070 | 0.9485 | 0.375 | 0.375 | | 0.3485 | 3.0 | 75 | 0.4961 | 0.9381 | 0.4 | 0.5 | | 0.178 | 4.0 | 100 | 0.5562 | 0.9510 | 0.3871 | 0.375 | | 0.178 | 5.0 | 125 | 0.5689 | 0.9485 | 0.4444 | 0.5 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0