--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: populism_model8 results: [] --- # populism_model8 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8782 - Accuracy: 0.9300 - F1: 0.3704 - Recall: 0.3125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:| | No log | 1.0 | 31 | 0.5128 | 0.9177 | 0.4286 | 0.4688 | | 0.3713 | 2.0 | 62 | 0.5507 | 0.8827 | 0.4 | 0.5938 | | 0.3713 | 3.0 | 93 | 0.6796 | 0.9259 | 0.5 | 0.5625 | | 0.2441 | 4.0 | 124 | 0.7588 | 0.9239 | 0.4638 | 0.5 | | 0.1715 | 5.0 | 155 | 0.8782 | 0.9300 | 0.3704 | 0.3125 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0