--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: populism_model9 results: [] --- # populism_model9 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4821 - Accuracy: 0.9430 - F1: 0.4062 - Recall: 0.4483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:| | No log | 1.0 | 42 | 0.5072 | 0.9520 | 0.2 | 0.1379 | | 0.4287 | 2.0 | 84 | 0.3206 | 0.8951 | 0.375 | 0.7241 | | 0.3071 | 3.0 | 126 | 0.3293 | 0.9160 | 0.4167 | 0.6897 | | 0.2561 | 4.0 | 168 | 0.5054 | 0.9400 | 0.3103 | 0.3103 | | 0.2026 | 5.0 | 210 | 0.4821 | 0.9430 | 0.4062 | 0.4483 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0