--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: temp_model results: [] --- # temp_model This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1984 - Accuracy: 0.9369 - F1: 0.3059 - Recall: 0.2267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:| | No log | 1.0 | 351 | 0.1665 | 0.9401 | 0.16 | 0.0930 | | 0.1813 | 2.0 | 702 | 0.2099 | 0.9418 | 0.1189 | 0.0640 | | 0.1067 | 3.0 | 1053 | 0.1984 | 0.9369 | 0.3059 | 0.2267 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0