AnonymousPage commited on
Commit
f94c510
·
verified ·
1 Parent(s): 96e408f

Create readme.md

Browse files
Files changed (1) hide show
  1. readme.md +99 -0
readme.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Model Summary
2
+
3
+ The checkpoint aligns with our pixel-linguist-all setting in the paper. The model is initialized from our monolingual model, and is trained on parallel data (205000 steps) <-> AllNLI (2600 steps), going back and forth for three rounds. This model is the last round checkpoint. We recommend using it with A100 GPU, aligning with training.
4
+
5
+ ### Downstream Use
6
+
7
+ Semantic Textual Similarity, Information Retrieval, Reasoning Retrieval
8
+
9
+ ### Out-of-Scope Use
10
+
11
+ The model might not be optimal for further fine-tuning to do other tasks (such as classification), as it's trained to do representation tasks with similarity matching.
12
+
13
+ ### Training Data
14
+
15
+ Please refer to the paper for the exact process.
16
+
17
+ ## Inference
18
+ Encoding with our PixelLinguist class is very straightforward, just like using a SentenceTransformer class.
19
+
20
+ ```python
21
+ model_name = "AnonymousPage/checkpoint-all"
22
+ model = PixelLinguist(model_name)
23
+ texts = ["I love you","I like you"]
24
+ embeddings = model.encode(texts)
25
+ print(outputs[0] @ outputs[1].T) # just use dot product because the embeddings are normalized automatically in the model class.
26
+ #tensor(0.9217)
27
+ ```
28
+
29
+ To use the PixelLinguist class: First install the package following our Github Repo. Then define our PixelLinguist Class as follow.
30
+
31
+ ```python
32
+ import torch
33
+ from PIL import Image
34
+ from pixel import (
35
+ AutoConfig,
36
+ PangoCairoTextRenderer,
37
+ PIXELForSequenceClassification,
38
+ PIXELForRepresentation,
39
+ PoolingMode,
40
+ get_attention_mask,
41
+ get_transforms,
42
+ glue_strip_spaces,
43
+ resize_model_embeddings,
44
+ )
45
+ from tqdm import tqdm
46
+ class PixelLinguist:
47
+ def __init__(self, model_name, batch_size = 16, max_seq_length = 64,
48
+ device=None, pooling = "mean", keep_mlp = False):
49
+ if device is not None:
50
+ self.device = device
51
+ else:
52
+ self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
53
+ self.config = AutoConfig.from_pretrained(model_name, num_labels=0)
54
+ self.batch_size = batch_size
55
+ if keep_mlp == True:
56
+ self.model = PIXELForSequenceClassification.from_pretrained(
57
+ model_name,
58
+ config=self.config,
59
+ pooling_mode=PoolingMode.from_string(pooling),
60
+ add_layer_norm=True
61
+ ).to(self.device)
62
+ else:
63
+ self.model = PIXELForRepresentation.from_pretrained(
64
+ model_name,
65
+ config=self.config,
66
+ pooling_mode=PoolingMode.from_string(pooling),
67
+ add_layer_norm=True
68
+ ).to(self.device)
69
+ self.processor = PangoCairoTextRenderer.from_pretrained(model_name, rgb=False)
70
+ self.processor.max_seq_length = max_seq_length
71
+ resize_model_embeddings(self.model, self.processor.max_seq_length)
72
+ self.transforms = get_transforms(do_resize=True, size=(self.processor.pixels_per_patch, self.processor.pixels_per_patch * self.processor.max_seq_length))
73
+ def preprocess(self, texts):
74
+ encodings = [self.processor(text=glue_strip_spaces(a)) for a in texts]
75
+ pixel_values = torch.stack([self.transforms(Image.fromarray(e.pixel_values)) for e in encodings])
76
+ attention_mask = torch.stack([get_attention_mask(e.num_text_patches, seq_length=self.processor.max_seq_length) for e in encodings])
77
+ return {'pixel_values': pixel_values, 'attention_mask': attention_mask}
78
+ def encode(self, texts, **kwargs):
79
+ all_outputs = []
80
+ for i in tqdm(range(0, len(texts), self.batch_size)):
81
+ batch_texts = texts[i:i+batch_size]
82
+ inputs = self.preprocess(batch_texts)
83
+ inputs = {k: v.to(self.device) for k, v in inputs.items()}
84
+ with torch.no_grad():
85
+ outputs = self.model(**inputs).logits.detach().cpu()
86
+ all_outputs.append(outputs)
87
+ return torch.cat(all_outputs, dim=0)
88
+ ```
89
+
90
+ ### Evaluation
91
+
92
+ For STS evaluation (see Github repo):
93
+ ```
94
+ python tools/evaluation_sts_all.py
95
+ ```
96
+ For BEIR information retrieval evaluation (see Github repo):
97
+ ```
98
+ python tools/evaluation_retrieval.py
99
+ ```