Uploading PPO environment and LunarLanderv2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-xla1118.zip +3 -0
- ppo-LunarLander-v2-xla1118/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-xla1118/data +95 -0
- ppo-LunarLander-v2-xla1118/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-xla1118/policy.pth +3 -0
- ppo-LunarLander-v2-xla1118/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-xla1118/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: LunarLander-v2-xla1118
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.43 +/- 21.47
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **LunarLander-v2-xla1118** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **LunarLander-v2-xla1118** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f447886b040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f447886b0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f447886b160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f447886b1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f447886b280>", "forward": "<function ActorCriticPolicy.forward at 0x7f447886b310>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f447886b3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f447886b430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f447886b4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f447886b550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f447886b5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f447886b670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f44799a2fc0>"}, "verbose": 2, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678508354818577391, "learning_rate": 0.0003, "tensorboard_log": "/content/drive/MyDrive/StableBaseline3_PPO/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1CCjxKDhY836siPaqmnr7FFgQ+I0fEPAAAAAAAAIA/ALzoPLg/o7vur+g69U3zPPMcD70ITco9AACAPwAAgD+NWPw9JVeHPy20Lj7kERC/WlkhPiYj+LsAAAAAAAAAAABEhLzccU89UiAuveZQq76BtAI8tlpdvQAAAAAAAAAAAL15vbH1+T4vSLA+9t/rvpQr3T0mdXg9AAAAAAAAAAAAuFS7GCPOPWSWQb7hOYK+5qocvhP2j7wAAAAAAAAAAOAdKb6hqEw/zgmCPk2t5b4TRMK93cQPPgAAAAAAAAAAphoyPnMNBz9lvFC+z4O9vhTU3T26gxS+AAAAAAAAAAAAgBa7e1HOO3J1cr6RtFq+d4MEvvZxdz4AAIA/AAAAAI14zD30Q+U+2OkkPbeftL526F09NZMmvAAAAAAAAAAAMzLgPPbIE7rKd8i7TSBdOX08HDtgzM24AACAPwAAgD+G9AI+7+GSP4imCz/0Xi6/UbpPPh97mD4AAAAAAAAAAEBGQT5rc+c+p/aavobRo74pX/E9h92IvgAAAAAAAAAADUKJPetLmj+uupc+tj4kv7g91z0NRFw+AAAAAAAAAABmgRU90zNzPytE6z2KOvS+tqbBPB1G3T0AAAAAAAAAAGZInLzP1xm8qkX3OaljmTxm1X49BRR+vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGEFjJpEvckCUhpRSlIwBbJRL+YwBdJRHQMvLBtzbN8p1fZQoaAZoCWgPQwhQj20Z8O5uQJSGlFKUaBVL3GgWR0DLyxiWPcSHdX2UKGgGaAloD0MILXx9rYvVc0CUhpRSlGgVS9ZoFkdAy8seS39aU3V9lChoBmgJaA9DCJC93v3xMnNAlIaUUpRoFU0CAWgWR0DLyyvQSi/PdX2UKGgGaAloD0MIOkAwRw/9b0CUhpRSlGgVS9doFkdAy8s1+5vtMXV9lChoBmgJaA9DCLBz02ZcHHNAlIaUUpRoFU0NAWgWR0DLyzdRR/EwdX2UKGgGaAloD0MIkGgCRWwjcECUhpRSlGgVS9BoFkdAy8tQAMDwIHV9lChoBmgJaA9DCGb0o+EUaXNAlIaUUpRoFUv8aBZHQMvLVF8ohIR1fZQoaAZoCWgPQwgVkPY/gOtxQJSGlFKUaBVL2mgWR0DLy1sxXXAedX2UKGgGaAloD0MIcayL26hKcECUhpRSlGgVS8loFkdAy8tgQtBfKXV9lChoBmgJaA9DCI85z9jX8nBAlIaUUpRoFUvKaBZHQMvLYrJjlPt1fZQoaAZoCWgPQwjIC+nwkLdyQJSGlFKUaBVL5GgWR0DLy2NpRGc4dX2UKGgGaAloD0MICydp/lhpckCUhpRSlGgVTQgBaBZHQMvLajFAE+x1fZQoaAZoCWgPQwi/1Tpx+d9wQJSGlFKUaBVL3GgWR0DLy4hjBl+WdX2UKGgGaAloD0MINC2xMloxckCUhpRSlGgVS99oFkdAy8uRGsFMZnV9lChoBmgJaA9DCN9qnbic63FAlIaUUpRoFUvdaBZHQMvLklTWGyp1fZQoaAZoCWgPQwjhYdo3t9pwQJSGlFKUaBVL6WgWR0DLy5ZI+W4WdX2UKGgGaAloD0MIUp55OexEcECUhpRSlGgVS95oFkdAy8ukb1h9cHV9lChoBmgJaA9DCHk9mBSfj3FAlIaUUpRoFUvcaBZHQMvLqMZxaPl1fZQoaAZoCWgPQwgX9UnusDFzQJSGlFKUaBVL1WgWR0DLy7yHKwIMdX2UKGgGaAloD0MImiMrv0yncECUhpRSlGgVS+hoFkdAy8u92xptanV9lChoBmgJaA9DCM/4vrgUinFAlIaUUpRoFUvkaBZHQMvLxIznA7B1fZQoaAZoCWgPQwiW6ZeIt8dxQJSGlFKUaBVLzWgWR0DLy9kOXmeUdX2UKGgGaAloD0MItixflyETc0CUhpRSlGgVS95oFkdAy8vdH2AXmHV9lChoBmgJaA9DCBhBYyZRTHBAlIaUUpRoFUvmaBZHQMvL3gc94eN1fZQoaAZoCWgPQwjmzeFa7W9xQJSGlFKUaBVL0mgWR0DLy+OHUMG5dX2UKGgGaAloD0MIsWmlEEj6cECUhpRSlGgVS+9oFkdAy8vzD/lyR3V9lChoBmgJaA9DCJ/KaU9J63BAlIaUUpRoFUvtaBZHQMvOdkkjX4F1fZQoaAZoCWgPQwgAA0GAjAZzQJSGlFKUaBVNEAFoFkdAy86Gv6j323V9lChoBmgJaA9DCAJLrmJx4G5AlIaUUpRoFUvYaBZHQMvOiwsPJ7t1fZQoaAZoCWgPQwhqhlRR/BhyQJSGlFKUaBVL5WgWR0DLzp3++/QCdX2UKGgGaAloD0MI9UwvMVbScUCUhpRSlGgVS+JoFkdAy86ge18b73V9lChoBmgJaA9DCK0XQzmR03FAlIaUUpRoFU0AAWgWR0DLzq6vvBrOdX2UKGgGaAloD0MIWg2Je6wNckCUhpRSlGgVS+xoFkdAy862aNMoMXV9lChoBmgJaA9DCNXrFoGx+m5AlIaUUpRoFUvoaBZHQMvOuGetjkN1fZQoaAZoCWgPQwhzEd+JGbNyQJSGlFKUaBVL1WgWR0DLzr/wy6+WdX2UKGgGaAloD0MI/rloyHiBcECUhpRSlGgVS9poFkdAy87Bwpe/pXV9lChoBmgJaA9DCP5F0JhJT3JAlIaUUpRoFUvsaBZHQMvO1O3UhFF1fZQoaAZoCWgPQwjVXkTb8W1yQJSGlFKUaBVL2mgWR0DLzuKMrEtNdX2UKGgGaAloD0MIv0NRoA/scECUhpRSlGgVS+RoFkdAy87k9ytFKHV9lChoBmgJaA9DCG9/LhqyQ3BAlIaUUpRoFUvfaBZHQMvO5qVQhwF1fZQoaAZoCWgPQwjEmPT3EgFyQJSGlFKUaBVL32gWR0DLzuzPfKp2dX2UKGgGaAloD0MIll0wuCbZcECUhpRSlGgVS89oFkdAy87xzT4L1HV9lChoBmgJaA9DCC9RvTXwQnBAlIaUUpRoFUvXaBZHQMvPEbah6B11fZQoaAZoCWgPQwgYJlMFIyByQJSGlFKUaBVL/GgWR0DLzydd7fHhdX2UKGgGaAloD0MIIQVPIVfBb0CUhpRSlGgVS8xoFkdAy88wf+S8rnV9lChoBmgJaA9DCIuLo3LTFnNAlIaUUpRoFU0hAWgWR0DLzzB1A7gbdX2UKGgGaAloD0MIh8CRQEPNc0CUhpRSlGgVS+hoFkdAy88yq3EycnV9lChoBmgJaA9DCCZw625eYXFAlIaUUpRoFUvMaBZHQMvPRxzq8lJ1fZQoaAZoCWgPQwif5uRFpoBxQJSGlFKUaBVL02gWR0DLz0paq0dBdX2UKGgGaAloD0MIRE30+ejNcECUhpRSlGgVS+RoFkdAy89LfWMCLnV9lChoBmgJaA9DCAGh9fDlXXFAlIaUUpRoFU0dAWgWR0DLz13LDAJtdX2UKGgGaAloD0MItTNMbalzbkCUhpRSlGgVS/xoFkdAy89fid8Rc3V9lChoBmgJaA9DCEhvuI9cOnBAlIaUUpRoFUvaaBZHQMvPZ6dc0Lt1fZQoaAZoCWgPQwhypgnbT4pxQJSGlFKUaBVL0GgWR0DLz3pdSl3ydX2UKGgGaAloD0MITIxl+mUxc0CUhpRSlGgVS8hoFkdAy8+FWvKU3XV9lChoBmgJaA9DCI1Ckln9HXNAlIaUUpRoFUvtaBZHQMvPkQYtQKt1fZQoaAZoCWgPQwg0D2CR3xZxQJSGlFKUaBVL5mgWR0DLz5m2y9mIdX2UKGgGaAloD0MIaM2Pv3Q8c0CUhpRSlGgVS/9oFkdAy8+lt1p0wXV9lChoBmgJaA9DCAQEc/S4rHJAlIaUUpRoFUvdaBZHQMvPybqyGBZ1fZQoaAZoCWgPQwirWz0nffRwQJSGlFKUaBVLxWgWR0DLz9tn7HhkdX2UKGgGaAloD0MI/dtlv25wcECUhpRSlGgVS8RoFkdAy8/dZK3/gnV9lChoBmgJaA9DCBe5p6s7MnBAlIaUUpRoFUvXaBZHQMvP4FVT72t1fZQoaAZoCWgPQwg/raI/NNtRQJSGlFKUaBVLtmgWR0DLz+2a2F37dX2UKGgGaAloD0MIqB5pcJtQcUCUhpRSlGgVS+JoFkdAy8/1YB/7SHV9lChoBmgJaA9DCMOdCyM9KG5AlIaUUpRoFUveaBZHQMvQEZflZHN1fZQoaAZoCWgPQwgH7dXHAxZzQJSGlFKUaBVNAAFoFkdAy9Aul/H5rXV9lChoBmgJaA9DCHlzuFY7H3RAlIaUUpRoFUvyaBZHQMvQQD8tPHl1fZQoaAZoCWgPQwjwbI/e8KdxQJSGlFKUaBVL52gWR0DL0ETaZhKEdX2UKGgGaAloD0MICFkWTHyTc0CUhpRSlGgVS/VoFkdAy9BGEOiFkHV9lChoBmgJaA9DCBowSPr0NXNAlIaUUpRoFUvUaBZHQMvQTkcCHRF1fZQoaAZoCWgPQwiSlsrbUYlwQJSGlFKUaBVL3mgWR0DL0E4osqaxdX2UKGgGaAloD0MINjrnp7h4cECUhpRSlGgVS/JoFkdAy9BydEsrd3V9lChoBmgJaA9DCAXAeAaNenNAlIaUUpRoFUvcaBZHQMvQcoz3yqd1fZQoaAZoCWgPQwjLFHMQtMtyQJSGlFKUaBVL7GgWR0DL0HU1jy4GdX2UKGgGaAloD0MIMWDJVawGc0CUhpRSlGgVS+BoFkdAy9CaTUy57XV9lChoBmgJaA9DCPhVuVC5MnFAlIaUUpRoFUvmaBZHQMvQtMibDuV1fZQoaAZoCWgPQwjvOEVHsolwQJSGlFKUaBVL2mgWR0DL0Lrq6e5GdX2UKGgGaAloD0MIij+KOnMCVECUhpRSlGgVS5ZoFkdAy9C73Sro4nV9lChoBmgJaA9DCM8tdCXCdnFAlIaUUpRoFUv3aBZHQMvQx9ELH+91fZQoaAZoCWgPQwipS8YxElxxQJSGlFKUaBVL6mgWR0DL0NJQk5ZKdX2UKGgGaAloD0MIldi1vd2UcUCUhpRSlGgVTRIBaBZHQMvQ2+XZ5A11fZQoaAZoCWgPQwhRvwtbM5BtQJSGlFKUaBVL2GgWR0DL0Nzr9l3AdX2UKGgGaAloD0MIJPJdSt0DcECUhpRSlGgVS9FoFkdAy9ED3np0OnV9lChoBmgJaA9DCFRTknX4b3FAlIaUUpRoFUvbaBZHQMvRCdhAnlZ1fZQoaAZoCWgPQwibWUsBqZxyQJSGlFKUaBVL3WgWR0DL0RnQQcxTdX2UKGgGaAloD0MIeLmI7wRAckCUhpRSlGgVS+hoFkdAy9EjqdpZfXV9lChoBmgJaA9DCB3nNuEelXJAlIaUUpRoFUvLaBZHQMvRLz0xubZ1fZQoaAZoCWgPQwh4uB0a1vZxQJSGlFKUaBVL/mgWR0DL0S9CTlkpdX2UKGgGaAloD0MI8G36s9/PckCUhpRSlGgVS8poFkdAy9ExQzk6tHV9lChoBmgJaA9DCGGqmbWU1HFAlIaUUpRoFUvmaBZHQMvRSBybQTp1fZQoaAZoCWgPQwiTp6ym601wQJSGlFKUaBVL3GgWR0DL0WruQZGbdX2UKGgGaAloD0MIKuW1ErrjMUCUhpRSlGgVS65oFkdAy9F3g7YChnV9lChoBmgJaA9DCNWuCWnNi3BAlIaUUpRoFUvRaBZHQMvRe4mCyyF1fZQoaAZoCWgPQwj5hsJn6yBvQJSGlFKUaBVL0WgWR0DL0YF8qnWKdX2UKGgGaAloD0MI75I4K6INcUCUhpRSlGgVS9BoFkdAy9GBhm5DqnV9lChoBmgJaA9DCMLB3sQQInJAlIaUUpRoFUvdaBZHQMvRmgjIJZ51fZQoaAZoCWgPQwjjGTT0z89xQJSGlFKUaBVL0mgWR0DL0aVxbSqmdX2UKGgGaAloD0MIm1Q01v4AVUCUhpRSlGgVS6ZoFkdAy9HXYODraHV9lChoBmgJaA9DCBnjw+ylSnFAlIaUUpRoFUvqaBZHQMvR2U9ZA6d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 740, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.25, "max_grad_norm": 0.25, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-xla1118.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a73dc86d5cc21ac5a61a1715677ff4c8cd7902e36f68b0592582fc9709ea4037
|
3 |
+
size 147480
|
ppo-LunarLander-v2-xla1118/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2-xla1118/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f447886b040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f447886b0d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f447886b160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f447886b1f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f447886b280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f447886b310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f447886b3a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f447886b430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f447886b4c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f447886b550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f447886b5e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f447886b670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f44799a2fc0>"
|
21 |
+
},
|
22 |
+
"verbose": 2,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678508354818577391,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": "/content/drive/MyDrive/StableBaseline3_PPO/",
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1CCjxKDhY836siPaqmnr7FFgQ+I0fEPAAAAAAAAIA/ALzoPLg/o7vur+g69U3zPPMcD70ITco9AACAPwAAgD+NWPw9JVeHPy20Lj7kERC/WlkhPiYj+LsAAAAAAAAAAABEhLzccU89UiAuveZQq76BtAI8tlpdvQAAAAAAAAAAAL15vbH1+T4vSLA+9t/rvpQr3T0mdXg9AAAAAAAAAAAAuFS7GCPOPWSWQb7hOYK+5qocvhP2j7wAAAAAAAAAAOAdKb6hqEw/zgmCPk2t5b4TRMK93cQPPgAAAAAAAAAAphoyPnMNBz9lvFC+z4O9vhTU3T26gxS+AAAAAAAAAAAAgBa7e1HOO3J1cr6RtFq+d4MEvvZxdz4AAIA/AAAAAI14zD30Q+U+2OkkPbeftL526F09NZMmvAAAAAAAAAAAMzLgPPbIE7rKd8i7TSBdOX08HDtgzM24AACAPwAAgD+G9AI+7+GSP4imCz/0Xi6/UbpPPh97mD4AAAAAAAAAAEBGQT5rc+c+p/aavobRo74pX/E9h92IvgAAAAAAAAAADUKJPetLmj+uupc+tj4kv7g91z0NRFw+AAAAAAAAAABmgRU90zNzPytE6z2KOvS+tqbBPB1G3T0AAAAAAAAAAGZInLzP1xm8qkX3OaljmTxm1X49BRR+vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGEFjJpEvckCUhpRSlIwBbJRL+YwBdJRHQMvLBtzbN8p1fZQoaAZoCWgPQwhQj20Z8O5uQJSGlFKUaBVL3GgWR0DLyxiWPcSHdX2UKGgGaAloD0MILXx9rYvVc0CUhpRSlGgVS9ZoFkdAy8seS39aU3V9lChoBmgJaA9DCJC93v3xMnNAlIaUUpRoFU0CAWgWR0DLyyvQSi/PdX2UKGgGaAloD0MIOkAwRw/9b0CUhpRSlGgVS9doFkdAy8s1+5vtMXV9lChoBmgJaA9DCLBz02ZcHHNAlIaUUpRoFU0NAWgWR0DLyzdRR/EwdX2UKGgGaAloD0MIkGgCRWwjcECUhpRSlGgVS9BoFkdAy8tQAMDwIHV9lChoBmgJaA9DCGb0o+EUaXNAlIaUUpRoFUv8aBZHQMvLVF8ohIR1fZQoaAZoCWgPQwgVkPY/gOtxQJSGlFKUaBVL2mgWR0DLy1sxXXAedX2UKGgGaAloD0MIcayL26hKcECUhpRSlGgVS8loFkdAy8tgQtBfKXV9lChoBmgJaA9DCI85z9jX8nBAlIaUUpRoFUvKaBZHQMvLYrJjlPt1fZQoaAZoCWgPQwjIC+nwkLdyQJSGlFKUaBVL5GgWR0DLy2NpRGc4dX2UKGgGaAloD0MICydp/lhpckCUhpRSlGgVTQgBaBZHQMvLajFAE+x1fZQoaAZoCWgPQwi/1Tpx+d9wQJSGlFKUaBVL3GgWR0DLy4hjBl+WdX2UKGgGaAloD0MINC2xMloxckCUhpRSlGgVS99oFkdAy8uRGsFMZnV9lChoBmgJaA9DCN9qnbic63FAlIaUUpRoFUvdaBZHQMvLklTWGyp1fZQoaAZoCWgPQwjhYdo3t9pwQJSGlFKUaBVL6WgWR0DLy5ZI+W4WdX2UKGgGaAloD0MIUp55OexEcECUhpRSlGgVS95oFkdAy8ukb1h9cHV9lChoBmgJaA9DCHk9mBSfj3FAlIaUUpRoFUvcaBZHQMvLqMZxaPl1fZQoaAZoCWgPQwgX9UnusDFzQJSGlFKUaBVL1WgWR0DLy7yHKwIMdX2UKGgGaAloD0MImiMrv0yncECUhpRSlGgVS+hoFkdAy8u92xptanV9lChoBmgJaA9DCM/4vrgUinFAlIaUUpRoFUvkaBZHQMvLxIznA7B1fZQoaAZoCWgPQwiW6ZeIt8dxQJSGlFKUaBVLzWgWR0DLy9kOXmeUdX2UKGgGaAloD0MItixflyETc0CUhpRSlGgVS95oFkdAy8vdH2AXmHV9lChoBmgJaA9DCBhBYyZRTHBAlIaUUpRoFUvmaBZHQMvL3gc94eN1fZQoaAZoCWgPQwjmzeFa7W9xQJSGlFKUaBVL0mgWR0DLy+OHUMG5dX2UKGgGaAloD0MIsWmlEEj6cECUhpRSlGgVS+9oFkdAy8vzD/lyR3V9lChoBmgJaA9DCJ/KaU9J63BAlIaUUpRoFUvtaBZHQMvOdkkjX4F1fZQoaAZoCWgPQwgAA0GAjAZzQJSGlFKUaBVNEAFoFkdAy86Gv6j323V9lChoBmgJaA9DCAJLrmJx4G5AlIaUUpRoFUvYaBZHQMvOiwsPJ7t1fZQoaAZoCWgPQwhqhlRR/BhyQJSGlFKUaBVL5WgWR0DLzp3++/QCdX2UKGgGaAloD0MI9UwvMVbScUCUhpRSlGgVS+JoFkdAy86ge18b73V9lChoBmgJaA9DCK0XQzmR03FAlIaUUpRoFU0AAWgWR0DLzq6vvBrOdX2UKGgGaAloD0MIWg2Je6wNckCUhpRSlGgVS+xoFkdAy862aNMoMXV9lChoBmgJaA9DCNXrFoGx+m5AlIaUUpRoFUvoaBZHQMvOuGetjkN1fZQoaAZoCWgPQwhzEd+JGbNyQJSGlFKUaBVL1WgWR0DLzr/wy6+WdX2UKGgGaAloD0MI/rloyHiBcECUhpRSlGgVS9poFkdAy87Bwpe/pXV9lChoBmgJaA9DCP5F0JhJT3JAlIaUUpRoFUvsaBZHQMvO1O3UhFF1fZQoaAZoCWgPQwjVXkTb8W1yQJSGlFKUaBVL2mgWR0DLzuKMrEtNdX2UKGgGaAloD0MIv0NRoA/scECUhpRSlGgVS+RoFkdAy87k9ytFKHV9lChoBmgJaA9DCG9/LhqyQ3BAlIaUUpRoFUvfaBZHQMvO5qVQhwF1fZQoaAZoCWgPQwjEmPT3EgFyQJSGlFKUaBVL32gWR0DLzuzPfKp2dX2UKGgGaAloD0MIll0wuCbZcECUhpRSlGgVS89oFkdAy87xzT4L1HV9lChoBmgJaA9DCC9RvTXwQnBAlIaUUpRoFUvXaBZHQMvPEbah6B11fZQoaAZoCWgPQwgYJlMFIyByQJSGlFKUaBVL/GgWR0DLzydd7fHhdX2UKGgGaAloD0MIIQVPIVfBb0CUhpRSlGgVS8xoFkdAy88wf+S8rnV9lChoBmgJaA9DCIuLo3LTFnNAlIaUUpRoFU0hAWgWR0DLzzB1A7gbdX2UKGgGaAloD0MIh8CRQEPNc0CUhpRSlGgVS+hoFkdAy88yq3EycnV9lChoBmgJaA9DCCZw625eYXFAlIaUUpRoFUvMaBZHQMvPRxzq8lJ1fZQoaAZoCWgPQwif5uRFpoBxQJSGlFKUaBVL02gWR0DLz0paq0dBdX2UKGgGaAloD0MIRE30+ejNcECUhpRSlGgVS+RoFkdAy89LfWMCLnV9lChoBmgJaA9DCAGh9fDlXXFAlIaUUpRoFU0dAWgWR0DLz13LDAJtdX2UKGgGaAloD0MItTNMbalzbkCUhpRSlGgVS/xoFkdAy89fid8Rc3V9lChoBmgJaA9DCEhvuI9cOnBAlIaUUpRoFUvaaBZHQMvPZ6dc0Lt1fZQoaAZoCWgPQwhypgnbT4pxQJSGlFKUaBVL0GgWR0DLz3pdSl3ydX2UKGgGaAloD0MITIxl+mUxc0CUhpRSlGgVS8hoFkdAy8+FWvKU3XV9lChoBmgJaA9DCI1Ckln9HXNAlIaUUpRoFUvtaBZHQMvPkQYtQKt1fZQoaAZoCWgPQwg0D2CR3xZxQJSGlFKUaBVL5mgWR0DLz5m2y9mIdX2UKGgGaAloD0MIaM2Pv3Q8c0CUhpRSlGgVS/9oFkdAy8+lt1p0wXV9lChoBmgJaA9DCAQEc/S4rHJAlIaUUpRoFUvdaBZHQMvPybqyGBZ1fZQoaAZoCWgPQwirWz0nffRwQJSGlFKUaBVLxWgWR0DLz9tn7HhkdX2UKGgGaAloD0MI/dtlv25wcECUhpRSlGgVS8RoFkdAy8/dZK3/gnV9lChoBmgJaA9DCBe5p6s7MnBAlIaUUpRoFUvXaBZHQMvP4FVT72t1fZQoaAZoCWgPQwg/raI/NNtRQJSGlFKUaBVLtmgWR0DLz+2a2F37dX2UKGgGaAloD0MIqB5pcJtQcUCUhpRSlGgVS+JoFkdAy8/1YB/7SHV9lChoBmgJaA9DCMOdCyM9KG5AlIaUUpRoFUveaBZHQMvQEZflZHN1fZQoaAZoCWgPQwgH7dXHAxZzQJSGlFKUaBVNAAFoFkdAy9Aul/H5rXV9lChoBmgJaA9DCHlzuFY7H3RAlIaUUpRoFUvyaBZHQMvQQD8tPHl1fZQoaAZoCWgPQwjwbI/e8KdxQJSGlFKUaBVL52gWR0DL0ETaZhKEdX2UKGgGaAloD0MICFkWTHyTc0CUhpRSlGgVS/VoFkdAy9BGEOiFkHV9lChoBmgJaA9DCBowSPr0NXNAlIaUUpRoFUvUaBZHQMvQTkcCHRF1fZQoaAZoCWgPQwiSlsrbUYlwQJSGlFKUaBVL3mgWR0DL0E4osqaxdX2UKGgGaAloD0MINjrnp7h4cECUhpRSlGgVS/JoFkdAy9BydEsrd3V9lChoBmgJaA9DCAXAeAaNenNAlIaUUpRoFUvcaBZHQMvQcoz3yqd1fZQoaAZoCWgPQwjLFHMQtMtyQJSGlFKUaBVL7GgWR0DL0HU1jy4GdX2UKGgGaAloD0MIMWDJVawGc0CUhpRSlGgVS+BoFkdAy9CaTUy57XV9lChoBmgJaA9DCPhVuVC5MnFAlIaUUpRoFUvmaBZHQMvQtMibDuV1fZQoaAZoCWgPQwjvOEVHsolwQJSGlFKUaBVL2mgWR0DL0Lrq6e5GdX2UKGgGaAloD0MIij+KOnMCVECUhpRSlGgVS5ZoFkdAy9C73Sro4nV9lChoBmgJaA9DCM8tdCXCdnFAlIaUUpRoFUv3aBZHQMvQx9ELH+91fZQoaAZoCWgPQwipS8YxElxxQJSGlFKUaBVL6mgWR0DL0NJQk5ZKdX2UKGgGaAloD0MIldi1vd2UcUCUhpRSlGgVTRIBaBZHQMvQ2+XZ5A11fZQoaAZoCWgPQwhRvwtbM5BtQJSGlFKUaBVL2GgWR0DL0Nzr9l3AdX2UKGgGaAloD0MIJPJdSt0DcECUhpRSlGgVS9FoFkdAy9ED3np0OnV9lChoBmgJaA9DCFRTknX4b3FAlIaUUpRoFUvbaBZHQMvRCdhAnlZ1fZQoaAZoCWgPQwibWUsBqZxyQJSGlFKUaBVL3WgWR0DL0RnQQcxTdX2UKGgGaAloD0MIeLmI7wRAckCUhpRSlGgVS+hoFkdAy9EjqdpZfXV9lChoBmgJaA9DCB3nNuEelXJAlIaUUpRoFUvLaBZHQMvRLz0xubZ1fZQoaAZoCWgPQwh4uB0a1vZxQJSGlFKUaBVL/mgWR0DL0S9CTlkpdX2UKGgGaAloD0MI8G36s9/PckCUhpRSlGgVS8poFkdAy9ExQzk6tHV9lChoBmgJaA9DCGGqmbWU1HFAlIaUUpRoFUvmaBZHQMvRSBybQTp1fZQoaAZoCWgPQwiTp6ym601wQJSGlFKUaBVL3GgWR0DL0WruQZGbdX2UKGgGaAloD0MIKuW1ErrjMUCUhpRSlGgVS65oFkdAy9F3g7YChnV9lChoBmgJaA9DCNWuCWnNi3BAlIaUUpRoFUvRaBZHQMvRe4mCyyF1fZQoaAZoCWgPQwj5hsJn6yBvQJSGlFKUaBVL0WgWR0DL0YF8qnWKdX2UKGgGaAloD0MI75I4K6INcUCUhpRSlGgVS9BoFkdAy9GBhm5DqnV9lChoBmgJaA9DCMLB3sQQInJAlIaUUpRoFUvdaBZHQMvRmgjIJZ51fZQoaAZoCWgPQwjjGTT0z89xQJSGlFKUaBVL0mgWR0DL0aVxbSqmdX2UKGgGaAloD0MIm1Q01v4AVUCUhpRSlGgVS6ZoFkdAy9HXYODraHV9lChoBmgJaA9DCBnjw+ylSnFAlIaUUpRoFUvqaBZHQMvR2U9ZA6d1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 740,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.25,
|
85 |
+
"max_grad_norm": 0.25,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2-xla1118/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83215b8369c513034eb55dd72a559353078c92edc0d4185b5cfb9343885460a1
|
3 |
+
size 88057
|
ppo-LunarLander-v2-xla1118/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f49931ab051086c581cc465743d20cd82997bd14df109f6bf8ec39b748741c8
|
3 |
+
size 43393
|
ppo-LunarLander-v2-xla1118/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-xla1118/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (200 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.42748844804726, "std_reward": 21.46549548329668, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T04:49:19.620554"}
|